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Preface

Exploration of very large search spaces lies at the heart of many disciplines in
computer science and engineering, especially systems verification and artificial
intelligence. In particular, the technique of model checking is used to automati-
cally verify the properties of a system. In the model checking approach, verifying
that a system S satisfies a property P is investigated by automatically checking
the satisfiability of the expression MS |= φP , where MS is a suitable model rep-
resenting all evolutions of S, and φP is a logical formula capturing the property
P to be checked.

Model checking and artificial intelligence have enjoyed a healthy interchange
of ideas over the past few years. On the one hand, model checking techniques
have benefited from efficient search algorithms developed in artificial intelligence
thereby increasing their efficiency, on the other, model checking techniques have
been extended to deal with typical artificial intelligence formalisms, such as
epistemic logics, thereby permitting the verification of systems based on artificial
intelligence concepts. In addition to this, there remains a keen interest among
researchers to use model checking to solve planning problems.

The forth MoChart workshop aimed at bringing together researchers in-
terested in the interplay of these areas. The workshop was held as a satellite
workshop of ECAI 2006, the 17th biennial European conference on Artificial
Intelligence. Previous workshops were held in San Francisco in 2005 (as a satel-
lite workshop of CONCUR 2005), Acapulco in 2003 (as a satellite workshop of
IJCAI 2003), and Lyon in 2002 (as a satellite workshop of ECAI 2002).

This volume includes extended versions of eight of the nine papers selected for
presentation at the workshop after a selective round of reviews, as well as three
further papers selected from submissions to the post-proceedings. An article
based on an invited presentation to the workshop is also included. The papers
are included in the order in which they were presented at the workshop.

The volume begins with the invited contribution by Bertoli et al. on a broad
overview of the use of model checking techniques for safety analysis, diagnosabil-
ity and synthesis in reactive systems. This is followed by an article by Alechina
et al. investigating the reasoning capabilities of resource bounded agents. A con-
tribution by Edelkamp on a variety of genetic algorithms operating on pattern
databases represented via OBDDs follows.

Hoffman et al. then discuss efficient optmization methods for model check-
ing real-time systems by introducing predicate abstraction to generate efficient
heuristic search functions. Analysis for real-time systems also features in the
following paper by Edelkamp and Jabber investigating the performance of sec-
ondary storage solutions for three search algorithms. Concluding in this line,
Lomuscio et al. present and evaluate algorithms for model checking networks of
timed-automata with clock differences against epistemic real-time specifications.
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Genetic algorithms feature again in the following article where Araragi and
Cho suggest a reinforcement learning technique to check liveness in reactive
systems. This is followed by a paper by Pecheur and Raimondi on model check-
ing variants of CTL supporting explicit actions via OBDDs. In the next paper,
Viganò proposes a methodology based on SPIN to verify the multi-agent frame-
works of e-institutions described by an ad-hoc modelling language.

In a change of topic Kurkowski et al. present a SAT-based methodology for
the verification of security protocols by modelling principals via networks of
communicating automata. Wijs and Lisser conclude the volume by analyzing
variations of distributed beam search algorithms to find solutions to scheduling
problems via model checking.

All the papers represent solid contributions to the state of the art in the inter-
play between artificial intelligence and model checking and provide an interesting
overview of the current trends of research worldwide.

We very much enjoyed the workshop and wish to thank the authors for their
excellent contributions and the program committee for their outstanding service
in selecting the papers.

We conclude by thanking Springer for enthusiastically supporting the idea
of publishing the post-proceedings of the event. The British Royal Association
of Engineering and the Deutsche Forschungsgemeinschaft are also acknowledged
for their generous support.

February 2007 Stefan Edelkamp
Alessio Lomuscio
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A Symbolic Model Checking Framework for
Safety Analysis, Diagnosis, and Synthesis�

Piergiorgio Bertoli, Marco Bozzano, and Alessandro Cimatti

ITC-irst - Via Sommarive 18 - 38050 Povo - Trento - Italy
{bertoli,bozzano,cimatti}@irst.itc.it

Abstract. Modern reactive control system are typically very complex entities,
and their design poses substantial challenges. In addition to ensuring functional
correctness, other steps may be required: with safety analysis, the behavior is an-
alyzed, and proved compliant to some requirements considering possible faulty
behaviors; diagnosis and diagnosability are forms of reasoning on the run-time
explanation of faulty behaviors; planning and synthesis allow the automated con-
struction of controllers that implement desired behaviors. Symbolic Model
Checking (SMC) is a formal technique for ensuring functional correctness that
has achieved a substantial industrial penetration in the last decade. In this paper,
we show how SMC can be used as a convenient framework to express safety
analysis, diagnosis and diagnosability, and synthesis. We also discuss how model
checking tools can be used and extended to solve the resulting computational
challenges.

1 Introduction

In recent years, complex applications increasingly rely on implementations based on
software and digital systems. Typical examples are transportation domains (e.g. rail-
ways, avionics, space), telecommunications, hardware, industrial control. The design of
such complex systems is a very hard task. On the one hand, more and more functional-
ities must be implemented, in order to provide for flexible, user-configurable products.
On the other hand, there is a need to achieve higher degrees of assurance, given the
criticality of the functions.

For the above reasons, the engineering of complex systems has witnessed the intro-
duction of model-based design techniques and tools. The idea is to write system models,
expressed at different levels of abstraction, and to provide support tools to automatically
analyze them. Different languages can be used to express such models; in general, they
can be encoded and treated in terms of transition systems. Model checking is a verifi-
cation technique to check whether a system (modeled as a transition system) satisfies
certain requirements (modeled as temporal logic).

Goal of this paper is to draw a unifying view between different aspects of engineer-
ing, within the framework of model checking. We show how many different stages in
model-based design can be cast in the framework of model checking, and can benefit
from the advanced symbolic model checking techniques and tools.

� This work has been partly supported by the E.U.-sponsored project ISAAC, contract no. AST3-
CT-2003-501848.

S. Edelkamp and A. Lomuscio (Eds.): MoChart IV, LNAI 4428, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We proceed in order of increasing complexity. We start by defining the problem
of model checking, and providing an overview of the available techniques. Then, we
consider the field of safety analysis: while in model checking the behavior of the system
is analyzed under nominal conditions, in safety analysis the problem is to check the
behavior of the design in presence of failures. This phase is carried out at design time.
The only increase required in the framework is the specification of a selected set of
failure mode variables. The next problem is diagnosis, that can be seen as the problem
of safety analysis carried out at run-time. On one side, only one trace at the time is
considered. On the other side, diagnosis is usually performed on systems which provide
limited run-time sensing, making the problem much harder. Another interesting and
related problem, known as diagnosability, is the analysis, at design time, of diagnosis
capabilities. We conclude with the problem of planning, which in the general setting
used in this paper amounts to the problem of synthesis, i.e. automatic generation of
controllers from specifications. The problem has been addressed in many variations,
and has interesting overlappings with diagnosis. In particular, in the case of planning
under partial observability, actions must be planned in order to achieve a given amount
of information.

This paper is structured as follows. In Section 2 we describe model checking, and
overview the main symbolic implementation techniques. In Section 3 we present the
ideas underlying safety analysis. In Section 4 we discuss the role of model checking
in diagnosis and diagnosability. In Section 5 we discuss planning based on symbolic
model checking, and in Section 6 we draw some conclusions, and outline directions for
future work.

2 Symbolic Model Checking

Model checking [21,22,45] is a formal verification technique that is widely used to
complement classical techniques such as testing and simulation. In particular, while
testing and simulation may only verify a limited portion of the possible behaviors of
complex, asynchronous systems, model checking provides a formal guarantee that some
given specification is obeyed. In model checking, the verified system is modeled as
a state transition system (typically of finite size). The specifications are expressed as
temporal logic formulæ, that express constraints over the dynamics of systems. Model
checking then consists in exhaustively exploring every possible system behavior, to
check automatically that the specifications are satisfied. In the case of finite models,
termination is guaranteed. Very relevant for debugging purposes, when a specification
is not satisfied, a counterexample is produced, witnessing the offending behavior of the
system. Formally, model checking relies on the following definition of a system:

Definition 1 (System). A system is a tuple M = 〈S,Si, I,R〉 where:

– S is a finite set of states,
– Si ⊆ S is the set of initial states,
– I is a finite set of inputs,
– R ⊆ S × I × S is the transition relation
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The transition relation specifies the possible transitions from state to state, triggered by
the applications of inputs to the system. For technical reasons, it is required to be total,
i.e. for each state there exists at least a successor state. From such a tuple, abstract-
ing away from inputs, one can immediately extract a state transition graph, a Kripke
structure that only describes transitions from states to states.

B C

A

A

C

CC

B

A

Fig. 1. A State Transition Graph and its unwinding

A path in such a Kripke structure is obtained starting from a state s ∈ Si, and then re-
peatedly appending states reachable throughR; since inputs have been abstracted away,
a path corresponds to the evolution of the system for some sequence of inputs. Given
the totality of R, behaviors are infinite. Since a state can have more than one successor,
the structure can be thought of as unwinding into an infinite tree, representing all the
possible executions of the system starting from the initial states. Figure 1 shows a state
transition graph and its unwinding from the initial (colored) state. A Kripke structure is
typically associated with a set of propositionsP , and with a labeling function that maps
each state onto a truth assignment to such propositions. In the following, we assume
that one truth assignment to the variables in P is associated to at most one state, and we
write s |= p to indicate that a proposition p holds in a state s.

Traditionally, two temporal logics are most commonly used for model checking,
CTL and LTL [31]. Computation Tree Logic (CTL) is interpreted over the computation
tree of the Kripke structure, while Linear Temporal Logic (LTL) is interpreted over
the set of its paths. These two logics have incomparable expressive power, and differ in
how they handle branching in the underlying computation tree: CTL temporal operators
quantify over the paths departing from a given state, while LTL operators describe
properties of all possible computation paths.

Model checking is the problem of deciding whether a certain temporal formula ϕ
holds in a given Kripke structureM (see [24] for a detailed overview). In the following
we use the notation M |= ϕ. The first model checking algorithms used an explicit rep-
resentation of the Kripke structure as a labeled, directed graph [21,22,45]. Explicit state
model checking is based on the exploration of the Kripke structure based on the ex-
pansion and storage of individual states. Over the years, explicit state model checking
has reached impressive performance (see for instance the SPIN model checker [38]).
The key problem, however, is that explicit state techniques are subject to the so-called
state explosion problem, i.e. they need to explore and store the states of the state tran-
sition graph. In industrial sized systems, this amounts to an extremely large number of



4 P. Bertoli, M. Bozzano, and A. Cimatti
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Fig. 2. A BDD for the formula (a1 ↔ a2) ∧ (b1 ↔ b2)

states. In fact, the Kripke structure is typically the result of the combination of a num-
ber of components (e.g. the communicating processes in a protocol), and the size of the
resulting structure may be exponential in the number of components.

A major breakthrough was enabled by the introduction of symbolic model check-
ing [40]. In symbolic model checking, rather than individual states and transitions,
the idea is to manipulate sets of states and transitions, using a logical formalism to
represent the characteristic functions of such sets [26,43,52,15]. Since a small logical
formula may admit a large number of models, this results in most cases in a very com-
pact representation which can be effectively manipulated. Each state is presented by
an assignment to the propositions (variables) in P (equivalently, by the corresponding
conjunction of literals). A set of states is represented by the disjunction of the formulae
representing each of its states. The basic set theoretic operations (intersection, union,
projection) are given by logical operations (such as conjunction, disjunction, and quan-
tification). In the following we use x to denote the vector of variables representing the
states of a given system; we write Si(x) for the formula representing the initial states.
A similar construction can be applied to represent inputs (for which we use a vector of
variables i). A set of “next” variables x′ is used for the state resulting after the transi-
tion: a transition from s to s′ is then represented as a truth assignment to the current and
next variables. We use R(x, i, x′) for the formula representing the transition relation
expressed in terms of those variables.

Obviously, the key issue is the use of an efficient logical representation. The first
one used for symbolic model checking was provided by Ordered Binary Decision Dia-
grams [12,13] (BDDs for short). BDDs are a representation for boolean formulas, which
is canonical once an order on the variables has been established. This allows equiv-
alence checking in constant time. Figure 2 depicts the BDD for the boolean formula
(a1 ↔ a2) ∧ (b1 ↔ b2), using the variable ordering a1, a2, b1, b2. Solid lines repre-
sent “then” arcs (the corresponding variable has to be considered positive), dashed lines
represent “else” arcs (the corresponding variable has to be considered negative). Paths
from the root to the node labeled with “1” represent the satisfying assignments of the
represented boolean formula (e.g., a1 ← 1, a2 ← 1, b1 ← 0, b2 ← 0).
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Such a powerful logical computation machinery provides the ideal basis for the im-
plementation of algorithms manipulating sets of states. In fact, the use of BDDs makes
it possible to verify very large systems (larger than 1020 states [15,40,14]). Symbolic
model checking has been successful in various fields, allowing the discovery of de-
sign bugs that were very difficult to highlight with traditional techniques. For instance,
in [23] the authors discovered previously undetected and potential errors in the design of
the cache coherence protocol described in the IEEE Futurebus+ Standard 896.1.1991,
and in [29] the cache coherence protocol of the Scalable Coherent Interface, IEEE Stan-
dard 1596-1992 was verified, finding several errors.

A more recent advance in the field originates from the introduction of bounded model
checking (BMC) [7,6]. The idea is twofold. First, we look for a witness to a property
violation that can be presented within a certain bound, say k transitions. Second, we
generate a propositional formula that is satisfiable if and only if a witness to the property
violation exists. The formula is obtained by unwinding the symbolic description of
the transition relation over time. In particular, we use k + 1 vectors of state variables
x0, . . . , xk, whose assignments represent the states at the different steps, and k vectors
of input variables i1, . . . , ik, that represent the inputs at the different transitions:

Si(x0) ∧R(x0, i1, x1) ∧ . . . ∧R(xk−1, ik, xk)

Additional constraints are used to limit such assignments to witness the violation of the
property, and to impose a cyclic behaviour when required. The solution technique lever-
ages the power of modern SAT solvers [30], which are able to check the satisfiability of
formulae with hundreds of thousands of variables, and millions of clauses.

In comparison to BDD-based algorithms, the advantages of SAT-based techniques are
twofold [25]. First, SAT-based algorithms have higher capacity, i.e. they can deal with
a larger number of variables. Second, SAT solvers have a high degree of automation,
and are less sensitive than BDDs to the specific parameters (e.g. variable ordering). As
a result, SAT-based technologies have been introduced in industrial settings to com-
plement and often to replace BDD-based techniques. In addition, SAT has become the
core of many other algorithms and approaches, such as inductive reasoning (e.g. [50]),
incremental bounded model checking (e.g. [36]), and abstraction (e.g. [35]). A survey
of the recent developments can be found in [44].

3 Safety Analysis

The goal of safety analysis is to investigate the behavior of a system in degraded condi-
tions, that is, when some parts of the system are not working properly, due to malfunc-
tions. Safety analysis includes a set of activities, that have the goal of identifying all
possible hazards of the system, and that are performed in order to ensure that the sys-
tem meets the safety requirements that are required for its deployment and use. Safety
analysis activities are particularly critical in the case of reactive systems, because haz-
ards can be the result of complex interactions involving the dynamics of the system
[51]. Traditionally, safety analysis activities have been performed manually. Recently,
there has been a growing interest in model-based safety analysis using formal methods
[11,9,1,10] and in particular symbolic model checking.
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Model-based safety analysis is carried out on formally specified models which take
into account system behavior in the presence of malfunctions, that is, possible faults of
some components. Symbolically, the occurrence of such faults is modeled with a set of
additional propositions, called failure mode variables. Intuitively, a failure mode vari-
able is true when the corresponding fault has occurred in the system (different failure
mode variables are associated to different faults). In the rest of this section, we assume
to have a system M = 〈S,Si, I,R〉 with a set of failure mode variables F ⊆ P . Fur-
thermore, for the sake of simplicity, we assume that failure modes are permanent (once
failed, always failed), that is, we assume that the following condition holds:

∀f ∈ F , s1, s2 ∈ S, i ∈ I (〈s1, i, s2〉 ∈ R ∧ s1 |= f) ⇒ s2 |= f (1)

The theory can be extended to the more general case of sporadic or transient failure
modes, that is, when faults are allowed to occur sporadically (e.g., a sensor showing
an invalid reading for a limited period of time), possibly repeatedly over time, or when
repairing is possible.

In this section we briefly describe two of the most popular safety analysis activities,
that is, fault tree analysis (FTA) and failure mode and effect analysis (FMEA), and we
discuss their relationship with the symbolic model checking techniques illustrated in
Section 2. Fault Tree Analysis [53] is an example of deductive analysis, which, given the
specification of an undesired state, usually referred to as a top level event, systematically
builds all possible chains of one of more basic faults that contribute to the occurrence of
the event. The result of the analysis is a fault tree, that is, a representation of the logical
interrelationships of the basic events that lead to the undesired state. In its simpler form
(see Fig. 3) a fault tree can be represented with a two-layer logical structure, namely a
top level disjunction of the combinations of basic faults causing the top level event. Each
combination, which is called cut set, is in turn the conjunction of the corresponding
basic faults. In general, logical structures with multiple layers can be used. A cut set is
formally defined via CTL as follows.

Definition 2 (Cut set). Let M = 〈S,Si, I,R〉 be a system with a set of failure mode
variablesF ⊆ P , let FC ⊆ F be a fault configuration, and TLE ∈ P a top level event.
We say that FC is a cut set of TLE, written cs(FC, TLE) if

M |= EF (
∧

f∈FC

f ∧
∧

f∈(F\FC)

¬f ∧ TLE).

Intuitively, a fault configuration corresponds to the set of active failure mode variables.
Typically, among the possible fault configurations, one is interested in isolating those
that are minimal in terms of failure mode variables, that is, those that represent simpler
explanations, in terms of system faults, for the occurrence of the top level event. Under
the hypothesis of independent faults, these configurations also represent the most prob-
able explanations for the top level event, and therefore they have a higher importance in
reliability analysis. Minimal configurations are called minimal cut sets and are formally
defined as follows.

Definition 3 (Minimal Cut Sets). Let M = 〈S,Si, I,R〉 be a system with a set of
failure mode variables F ⊆ P , let F = 2F be the set of all fault configurations, and
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Fig. 3. An example of fault tree
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TLE ∈ P a top level event.We define the set of cut sets and minimal cut sets of TLE
as follows:

CS(TLE) = {FC ∈ F | cs(FC, TLE)}
MCS(TLE) = {cs ∈ CS(TLE) | ∀cs′ ∈ CS(TLE) (cs′ ⊆ cs ⇒ cs′ = cs)}

As a side remark, we mention that the notion of minimal cut set can be extended to
the more general notion of prime implicant (see [27]). The notion of prime implicants
is based on a different definition of minimality, involving both the activation and the
absence of faults (we refer to [27] for more details). Formally, the previous definition for
MCS(TLE) needs to be modified to take into account the different notion of minimality.

We also notice that, compared to the case of purely combinational systems, here fail-
ure mode variables may be associated to dynamics, and thus it is possible that different
models of failure (e.g. persistent vs sporadic) may have different impact on the results.
Moreover, the temporal relationships between failures may be important, e.g. a certain
top level event may require f1 to occur before f2. There have been proposals to enrich
the notion of minimal cut set with such information [1].

Based on the previous definitions, fault tree analysis can therefore be described as
the activity that, given a top level event, involves the computation of the (minimal) cut
sets (or prime implicants) and their arrangement in the form of a tree. An example of
fault tree, generated with the FSAP safety analysis platform [33], is shown in Fig. 3.
Fault trees with multiple layers can also be obtained, for instance based on the hierarchy
of the system model (see [2]).

Failure mode and effect analysis is similar to fault tree analysis. It takes as input a
set of fault configurations and a set of top level events, and it produces a table mapping
elements in the two sets. An entry in the table means that a given fault configuration
is a possible explanation for the corresponding top level event. The formal definition is
as follows.

Definition 4 (Failure Mode and Effect Analysis). Let M = 〈S,Si, I,R〉 be a sys-
tem with a set of failure mode variables F ⊆ P , let F = {FC1, . . . , FCn} ⊆ 2F

be a set of fault configurations, and T = {TLE1, . . . , TLEm} ⊆ P be a set of top
level events. An FMEA table for F and TLE, denoted FMEA(F, T ) is the set of pairs
{〈FCi, TLEj〉 | cs(FCi, TLEj)}.

Both FMEA and FTA can be realized with model checking techniques, as witnessed
by the FSAP platform [33,10]. As advocated in [11], it is important to have a complete
decoupling between the system model and the fault model. For this reason, the FSAP
platform relies on the notions of nominal system model and extended system model. The
nominal model formalizes the behavior of the system when it is working as expected,
whereas the extended model defines the behavior of the system in presence of faults.
The decoupling between the two models is achieved in the FSAP platform by generating
the extended model automatically via a so-called model extension step.

The model extension step takes as input a system and a specification of the faults
to be added, and automatically generates the corresponding extended system. It can be
formalized as follows. Let M = 〈S,Si, I,R〉 be the nominal system model. A fault
is defined by the proposition p ∈ P to which it must be attached to, and by its type,
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specifying the “faulty behavior” of proposition p in the extended system (e.g., p can
non-deterministically assume a random value, or p is stuck at a particular value). Given
the proposition p, FSAP introduces a new proposition pFM , the failure mode variable,
modeling the possible occurrence of the fault, and two further propositions pFailed

and pExt, with the following intuitive meaning. The proposition pFailed models the
behavior of p when a fault has occurred. For instance, the following condition (where
S′ is the set of states of the extended system) defines a so-called inverted failure mode
(that is, proposition pFailed holds if and only if proposition p does not hold):

∀s ∈ S′ (s |= pFailed ⇐⇒ s �|= p) (2)

The proposition pExt models the extended behavior of p, that is, it behaves as the orig-
inal p when no fault is active, whereas it behaves as pFailed in presence of a fault.
Formally, we impose the following conditions:

∀s ∈ S′ s �|= pFM ⇒ (s |= pExt ⇐⇒ s |= p) (3)

∀s ∈ S′ s |= pFM ⇒ (s |= pExt ⇐⇒ s |= pFailed) (4)

The extended system MExt = 〈S′,S′
i, I, R′〉 can therefore be easily defined in terms

of the nominal system by adding the set of propositions {pFM , pFailed, pExt} to the
original set P , modifying the definition of the (initial) states and of the transition rela-
tion, and imposing the additional conditions (1), (2) (in the hypothesis of an inverted
failure mode), (3) and (4). We omit the details for the sake of simplicity. Finally, sys-
tem extension with respect to a set of propositions can be defined in a straightforward
manner, by iterating system extension over single propositions.

The extended system model resulting from the extension step is used in FSAP to
carry out the safety analysis activities, FMEA and FTA. The corresponding algorithms
are implemented as an extension of the NuSMV tool [41,16], a symbolic model-checker
developed at ITC-IRST. As far as FTA is concerned, the FSAP platform can be used
to compute both the minimal cut sets and the prime implicants of a given top level
event. The computation involves two different stages, both of them relying on symbolic
techniques. The first stage consists in computing the set of cut sets, that is, the set of
fault configurations satisfying the condition of Def. 2. This can be realized, as described
in [10], by using model checking symbolic techniques to compute a forward fixpoint of
a forward image primitive. The second stage of the computation consists in extracting
the set of minimal cut sets from the set computed at the previous stage. The extraction
is based on classical routines for computing the prime implicants of Boolean functions
[27,46].

4 Diagnosis and Diagnosability

Rarely physical systems are fully observable: parts of their state are hidden, and sen-
sors are used to expose (partial) information about otherwise unobservable aspects. Di-
agnosis starts from observed run time behavior of a system, and tries to provide an
explanation (in terms of hidden states). In particular, diagnosis is often the problem of
identifying the set of possible causes of a specific unexpected or faulty behavior.



10 P. Bertoli, M. Bozzano, and A. Cimatti

The seminal approaches to diagnosis are carried out considering combinational,
state-less models. These can be symbolically represented as a propositional formula
Φ(x, o), where x are the hidden variables, and o are the observable variables (e.g. con-
veyed inputs and observed outputs). Within this framework, it is possible to encompass
problems such as fault detection (that is, detecting whether the system is malfunction-
ing) and fault isolation (i.e. detecting a specific cause of malfunctioning). Let μ(o) de-
note an assignment to the observable variables. Then, we say that an assignment D(x) is
a diagnosis (alternatively, an explanation) for μ(o) if Φ(x, o) is true under the interpre-
tation μ(o) ∪D(x). Notice that diagnoses need not be total, i.e. some hidden variables
may be unassigned (in which case any extension to D(x) is also an explanation).

In general, several possible explanations may exist, and some may be preferable
over others, according to some criterion. For example, an explanation may be minimal
(i.e. any of its subsets is not an explanation); alternatively, it could be of least cardinality,
based on the number of assigned literals, or could be required to have the least number
of variables assigned to true. Probabilistic information can be taken into account, in
order to require the most likely explanation.

In contrast to model checking and safety analysis, that are typically carried out at de-
sign time, diagnosis deals with the run-time of a system. Thus, we reject the assumption
(that is used for for verification and safety analysis) that the system is fully observable.
When considering the problem of diagnosis for reactive systems, failure modes and
other hidden variables may have their own dynamics, leading to the following exten-
sion of Def. 1:

Definition 5 (Partially Observable System). A system is a tuple M =
〈S,Si, I,O,R,X〉 where:

– S is a finite set of states,
– Si ⊆ S is the set of initial states,
– I is a set of inputs to the system,
– R ⊆ S × I × S is the transition relation
– O is a set of possible observations;
– X ⊆ S ×O is the observation relation;

We require X to be total, i.e. for each state s there exists an observation o such that
X (s, o). Two states associated to the same observation may be indistinguishable. Notice
that this model of observation is extremely expressive, as it makes it possible for a state
to be associated to many different observations.

The symbolic representation used in previous sections can be generalized to deal
with the new notions. In particular, the set of observationsO is presented symbolically
by introducing a set of observation variables; each observation is represented by a
valuation to the observation variables. The observation relation is then represented as a
formula in the state variables and the observation variables.

Definition 6. An execution in M is a sequence σ = s0, o0, i1, s1, o1, i2, . . . , ik, sk, ok,
such that s0 ∈ S0, R(si−1, ii, si) for 1 ≤ i ≤ k, and X (si, oi) for 0 ≤ i ≤ k. The
observable trace of an execution σ is w = o0, i1, o1, . . . , ik, ok, and we write σ : s0

w−→
sk. We also write s0

w−→ sk if such a σ exists.



A SMC Framework for Safety Analysis, Diagnosis, and Synthesis 11

The above definition captures the dynamics of a plant and its observable counterpart. If
an execution σ has k steps, then it is associated to a trace w ∈ O × (I × O)k . The set
of traces is in general a subset of O × (I × O)∗. In the following we use σ to denote a
feasible execution, and w to denote the corresponding (observable) trace.

The problem of diagnosis in the setting of reactive systems generalizes the combina-
tional case in the following directions. First, an explanation is no longer an assignment
to the hidden variables, but rather an assignment to the hidden variables over time: in
order to explain a sequence of length k, a suitable amount of assignments are in order.
Second, the notion of preferable explanation may be generalized according to tempo-
ral aspects. As a result, there may be many more definitions of preference between
explanations.

Remarkably, given an observable trace w of specific length, it is possible to recast the
problem of diagnosis within the framework of bounded model checking. In particular,
we start from the formula describing all the executions of length k:

Si(x0) ∧ X (x0, o0) ∧R(x0, i1, x1) ∧ X (x1, o1) ∧ . . . ∧R(xk−1, ik, xk) ∧ X (xk, ok)

We then restrict the set of models by conjoining it with the formula that restricts the
input and output variables to assume the values required by the observable trace w:

w[0](o0) ∧w[1](i1) ∧w[2](o1) ∧ . . . ∧ w[2k−1](ik) ∧ w[2k](ok)

where w[i] stands for the formula encoding the constraint expressed by i-th element
of w. With this constraint, the input and output variables are assigned specific truth
values: the formula resulting after the simplification only contains state variables, and
the set of satisfying assignments to the (temporal instantiations of the) state variables
is a description of the sequences of states that may be associated with the observable
trace w.

The problem of diagnosis has a design-time counterpart. In fact, it is often an im-
portant question whether a diagnoser will be able to carry out its tasks for all possible
run-time executions of the observed system. This task, called diagnosability, can for
instance be used in order to analyze the effectiveness and displacement of sensors in a
design.

The task of diagnosability has been tackled with several methods, based on automata
theory and similar techniques, see e.g. [39,48,49]. Intuitively, a system is not diagnos-
able if two executions exist that share the same observable trace, but have different
properties (e.g. in one a failure occurs, while the other one models a nominal behavior),
and should be distinguishable. In [17], the problem is tackled by means of bounded
model checking techniques, by reduction to a so-called twin model:

Si(xl
0) ∧ X (xl

0, o0) ∧ Si(xr
0) ∧ X (xr

0, o0)∧
R(xl

0, i1, x
l
1) ∧ X (xl

1, o1) ∧R(xr
0, i1, x

r
1) ∧ X (xr

1, o1) ∧ . . .∧
R(xl

k−1, ik, xl
k) ∧ X (xl

k, ok) ∧R(xr
k−1, ik, xr

k) ∧ X (xr
k, ok)

Two (left and right, l and r) copies of the system are fed with the same sequence of
inputs, and forced to exhibit the same outputs. Additional constraints on the state vari-
ables are used to express the required properties of the left and right executions. If the
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problem is satisfiable, then the system is not diagnosable; in addition, it is possible
to provide as diagnostic information the critical pair, i.e. the pair of indistinguishable
executions. The usage of SMC techniques for this purpose has allowed checking the
diagnosability of significantly complex system models developed within Nasa [17].

5 Planning

We now introduce planning, and discuss its relationships with (symbolic) model check-
ing and diagnosis.

Planning is the problem of identifying a plan whose execution controls the system
(called in that context planning domain) so that, when the system executes under the
control of the plan, certain properties (over its states) are obeyed. Several specializations
of this general statement are possible and relevant, both theoretically and for practical
purposes. For instance, in classical planning [32,34] it is assumed that the domain is
deterministic, that its state can be observed at runtime, and that the desired execution
properties amount to a set of goal states which must be finally reached. The deter-
ministic nature of the controlled system allows restricting to plans structured simply
as sequences of inputs that must be provided to the domain. In strong planning [20],
the assumption that the domain is deterministic is removed. This makes it necessary to
consider plans that have a conditional, loop-free structure, and that branch depending
on the currently observed system state. Loops are also considered by a relaxation of
the problem called strong cyclic planning [18]. These same problems can be consid-
ered when the hypothesis of full observability of the domain is removed. In conformant
planning [19], the opposite hypothesis is made: nothing can ever be observed about the
status of the domain; therefore, plans may not branch and have a sequential structure
like in classical planning. In this case, however, goal achievement has to be guaranteed
regardless of nondeterminism - i.e. several different, but equally plausible executions
must be considered for the plan. Contingent planning [8,5] deals with the more gen-
eral case where a domain is partially observable, i.e. it has the same features of the
systems considered for diagnosis in Section. 4. On top of having to consider multiple
executions, of course, contingent plans have a branching structure, and take choices at
runtime depending on the currently perceived observations. Different planning prob-
lems have also been tackled where goals are not anymore set of states to be reached,
but define constraints over the behavior of the domain during the whole plan execution,
using CTL [42] or different logics [28].

In all instantiations of the planning problem, the plan can be interpreted as an au-
tomaton, whose execution controls the system (the planning domain) by synchronously
reading the system’s outputs (the observations) and providing the system’s inputs (the
planning actions). The specific plan structures considered in the various problems sim-
ply correspond to constraints over the structure of the corresponding automata. Thus
planning refers to a framework where the system and diagnoser described in the previ-
ous sections are complemented by a controller (the plan). Here, we provide the most
general definition, referring to a partially observable domain - its simplifications for the
special cases of full or null observability are trivial.
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Definition 7 (controller). A controller for system M = 〈S,Si, I,O,R,X〉 is a tuple
Π = 〈Σ, σ0, α, ε〉, where:

– Σ is the set of contexts.
– σ0 ∈ Σ is the initial context.
– α : Σ ×O ⇀ I is the action function; it associates to a context c and an observa-

tion o an input a = α(c, o) for the system.
– ε : Σ × O ⇀ Σ is the context evolution function; it associates to a context c and

an observation o a new context c′ = ε(c, o).

Naturally, a symbolic representation in terms of variables is also possible, and indeed
used, for the controller as well as for the system. Notice that the controller is a deter-
ministic Moore machine; nondeterministic controllers are not useful for our purposes
and therefore we will not consider them.

The execution of the system under the control of the plan can be represented by a
Kripke structure, called execution structure, whose states are configurations that couple
system states and plan contexts. In fact, the execution structure is a finite presentation
of every possible execution trace, and corresponds to the standard synchronous product
of the plan and the system, denotedM×Π .

This makes it possible to define a notion of satisfactory plan, for some property φ,
in terms of a model checking problem: plan Π satisfies goal φ for domain M if and
only if M×Π |= φ. When the goal φ is expressed as a CTL or LTL formula, standard
model checking techniques can be used for this purpose.

Therefore, the planning problem can be formulated as follows: given a system M
and a goal φ, find an executable controller Π such that their synchronous execution
satisfies the goal φ, i.e. Π ×M |= φ.

This statement highlights the main differences and similarities between planning and
model checking: they both refer to properties of execution of a system modeled as a fi-
nite state automata (eventually constrained by a controller), but the latter is a synthesis
problem rather than a verification one. In general, planning is a (theoretically and prac-
tically) harder problem than model checking, which intuitively requires searching for a
single execution witness, rather than for a complex plan.

The fact that model checking also synthesizes a counterexample for a non-valid prop-
erty makes it possible to exploit it in a direct way to solve planning problems in the
specific ’classical’ setting. This is performed by stating, as the property that needs be
verified, that the goal φ can never be finally achieved. As usual, the application of model
checking returns one of two possible answers: either such property holds, or it does not
and a counterexample is given. In the former case, this indicates that it is actually im-
possible to achieve the goal, therefore no plan exists. In the latter, a plan exists, and it
corresponds to the sequence of inputs given as a counterexample.

For more complex cases, such a direct usage of model checking to generate solution
controllers is not possible, either because controllers have a branching/looping structure
or because the goal language must be richer then the CTL/LTL used in model checking.

In these cases, the commonalities between the elements involved in model checking
and planning are exploited by making use of model checking’s symbolic techniques
and primitives to manipulate planning domains. For instance, strong planning under
full observability can be tackled by a backward fixpoint of a backward image primitive.
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Such strong backward image must be defined to derive all the strong predecessors of a
set of states φ, i.e. all those states such that there exists some action whose outcomes,
applied to them, all belong to φ. This primitive can be defined as a QBF formula and
implemented on top of the basic BDD primitives used to compute the semantics of the
temporal CTL formula AXφ in model checking. Similar primitives are adopted for
the remaining planning problems: in every case, the ability to manipulate sets of states
by means of basic primitives is used to describe (forward/backward) images either on
search frontiers, or on sets of observationally equivalent states.

Concerning the relationships between diagnosis and planning, they are evident once
partially observable domains are considered. In this case, as stated in [4], CTL is not
adequate to express many interesting planning goals. Such inadequacy is related with
the fact that in this setting, during plan execution, a monitor has only limited run-time
information, which in general is not sufficient to rule out uncertainty about the state of
the controlled system. To express that a certain property must not only be achieved, but
also detected by the monitor, the knowledge operator K must be added to CTL, i.e. the
K-CTL logic developed for diagnosis is adopted. For instance, a strong requirement of
the form “finally achieve and detect property φ”, such as those considered in most con-
tingent planning approaches ([5,47,37]), can be written as the K-CTL formula AF K φ.
That is, those approaches solve the problem of identifying a controller Π such that

M×Π |= AF K φ

Two remarks are in order. First, as discussed in [3], considering CTL goals may nev-
ertheless be interesting in some cases, where goal detection is not possible, and only
goal achievement can be pursued. Second, symbolic model checking techniques can
also be used when looking for plans that satisfy K-CTL goals. For this purpose one
needs to consider the search space called belief space, whose nodes are sets of obser-
vationally equivalent states called beliefs, representing the epistemic knowledge of a
universal monitor. Contingent planning on K-CTL goals can be formulated as and/or
search in the belief space [8], and, as shown in [5,47], it is possible to represent be-
liefs symbolically, as formulas modeling sets of states, and progress or regress them by
appropriate image primitives.

The relationship between diagnosability and (contingent) planning becomes evident
when a K-CTL goal formula of the form AF (K(φ) ∨ K(¬φ)) is used. In this case,
the generated plan is one that finally achieves knowing whether φ holds or not, i.e.
diagnosing φ. That is, contingent planning is to diagnosability what classical planning
is to model checking: it generates a controller that drives the system to achieve a goal
that can be otherwise verified by a diagnosability check.

This paves the way to the use of K-CTL planning to generate active diagnosers,
that is controllers that can be used to appropriately drive systems so that faults can be
discovered.

Notice the major difference with the passive diagnosing of Section 4: here, we are
not given the execution trace for diagnosing, but rather we generate from scratch a
controller that - interacting with the system in a non trivial way - drives it so that the
observer will obtain a univocal diagnosis. We also remark that the generality of the
approach allows conjoining “diagnosis-oriented” goals such as the above with differ-
ent requirements; e.g a formula of the form AFφ actually forces the system to finally
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achieve φ, and a formula of the form AGψ requires that ψ holds throughout the execu-
tion of the plan. This way, we obtain a controller that conjoins a diagnosis task with a
control task that aims at driving the system according to some desirable behavior. The
way in which the different tasks are mixed within a unique controller is responsibility
of the specific and/or search algorithm used to visit the belief space, and in particular
of search heuristics.

By now, we conducted some preliminary experiments with active diagnosis by en-
riching the goal language of the MBP system with the modal knowledge operator, and
leaving implicit - as usual - the top-level CTL AF operator. We conducted the experi-
ments on a model of the Cassini spacecraft and we were able to synthesize a diagnoser
for several goals of the form AF (K(φ)∨K(¬φ)). We implemented a prototype, based
on MBP, which is able to synthesize the diagnoser for the given goal and to automati-
cally generate the model corresponding to the synchronous product of the synthesized
controller and the original model. The diagnosability properties of the resulting model
were further verified using the FSAP platform [33].

6 Conclusions and Future Work

In this paper we have discussed how the framework of symbolic model checking can
be used to model several interesting problems for the development of reactive systems:
safety analysis, diagnosis, diagnosability, and synthesis. Symbolic model checking also
provides effective computational primitives and tools for the implementation of special
purpose, highly effective algorithms to tackle the above problems. We believe that one
of the most interesting challenges in the field is to provide an effective support toolset,
where different design tasks can be cast in a uniform working framework.
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1. Åkerlund, O., Bieber, P., Böede, E., Bozzano, M., Bretschneider, M., Castel, C., Cavallo, A.,
Cifaldi, M., Gauthier, J., Griffault, A., Lisagor, O., Lüdtke, A., Metge, S., Papadopoulos, C.,
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Abstract. The effective reasoning capability of an agent can be defined as its
capability to infer, within a given space and time bound, facts that are logical
consequences of its knowledge base. In this paper we show how to determine the
effective reasoning capability of an agent with limited memory by encoding the
agent as a transition system and automatically verifying whether a state where the
agent believes a certain conclusion is reachable from the start state. We present
experimental results using the Model Based Planner (MBP) which illustrates how
the length of the deduction varies for different memory sizes.

1 Introduction

Consider an agent that has a finite knowledge base and some rules of inference which
allow it to derive new information from its knowledge base. It is intuitively clear that
some derivations require more memory than others (e.g., to store intermediate results),
and that two agents with the same knowledge base and the same set of inference rules,
but with different amounts of memory, may not be able to derive the same formulas.

The question of how much memory a reasoning agent needs to derive a formula is
of considerable theoretical and practical interest. From a theoretical point of view, it is
interesting to investigate how the deductive strength of a particular logic changes when
only a fixed number of formulas are allowed to be ‘active’ in a derivation. From a practi-
cal point of view, the question of whether an agent will run out of memory or time before
achieving its goal(s) is clearly a major concern for the agent developer. As agent tasks
become more open ended, the amount of memory required to achieve them becomes
harder to predict a priori. For example, the reasoning capabilities of agents assumed by
many web service applications is non trivial (e.g., reasoning over complex ontologies or
about business processes described by a set of business rules) and the memory require-
ments correspondingly difficult for the agent developer to determine a priori. At the
same time trends towards mobile agents and agents which run on mobile devices such
as PDAs and smart phones imply more processor and memory efficient agent designs
(e.g., the Micro-FIPA-OS [18] and JADE-LEAP [4] platforms). Such devices typically
have a relatively small amount of physical memory (and no virtual memory), which
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must be shared between the OS, the agent platform and other applications running on
the device. While increased bandwidth and more powerful handheld devices will un-
doubtedly become available, the rapid growth in, e.g., the number and complexity of
ontologies, seems likely to outstrip any increases in hardware capabilities, at least for
the foreseeable future.

In this paper, we present a novel procedure for automatically verifying the space and
time requirements for resource-bounded reasoning agents. Specifically, we address the
question: given an agent and a formula φ, does the agent have sufficient memory to
derive φ, and, if it does, what is the length of the shortest derivation within the specified
memory bound? In outline, our approach is as follows. We represent a reasoning agent
as a finite state machine in which the states correspond the formulas currently held in
the reasoner’s memory and the transitions between states correspond to applying the
reasoning rules. Our approach is general enough to admit verification of reasoners with
any set of inference rules, provided that those rules can be encoded as transitions be-
tween FSM states. To illustrate the generality of our approach, we show how to encode
two example reasoners: a classical propositional reasoner which can derive all classical
consequences of its knowledge base given unlimited memory, and a forward-chaining
rule-based agent of the kind found in many applications employing ontological reason-
ing and business rules. To check whether a reasoner has enough memory to derive a
formula φ, we specify the FSM as input to the model-based planner MBP [6], and check
whether the reasoner has a plan (a choice of memory allocations and inference rule ap-
plications), all executions of which lead to states containing φ. Using a simple business
rules example, we show how MBP can be used to automatically verify the existence
of a derivation, and present experimental results which illustrate how the length of the
deduction varies for different memory sizes.

The remainder of the paper is organised as follows. In section 2 we introduce our
model of the agent’s memory and give some examples of the kinds of properties we wish
to verify. In section 3, we present our formal model of a resource bounded agent and
show how to model two example agents, a simple agent that reasons using rules, and a
classical reasoner capable of deriving any classical consequence of its knowledge base.
In section 4 we briefly introduce the MBP model-based planner and explain how it is
used to verify the memory requirements of a resource-bounded reasoner. In section 5 we
present a simple example to illustrate the effects of memory limitations on a rule-based
reasoning agent and give results from MBP illustrating how the length of deduction
varies for different memory sizes. In section 6 we briefly describe related work before
concluding in section 7.

2 Memory Bounds

Consider an agent running on a small device like a mobile phone, a simple PDA, or even
a smaller device like a node of a sensor network. The agent has a pool of potentially
available information stored in a Knowledge Base (K)1 and a fixed set of reasoning

1 The information could be stored in a remote database or in a persistent memory like a flash
card or obtained in input from a user. In this paper we abstract from these aspects and say only
that information is potentially available in a knowledge base K.
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rules. Using information from the knowledge base and the inference rules, the agent
can infer new formulas. We assume that the knowledge base is too large to fit into the
agent’s memory, and the agent can store at most n formulas from K in memory at
any given time. Loading new information from the KB when the agent’s memory is full
overwrites some of the information currently in memory. For example, a location-aware
device which advises a traveller about local amenities and tourist attractions cannot load
an entire database of attractions and ontological definitions in memory when computing
a recommendation, and will have to manage the subset of formulas from K which
are in memory and available for inference. Given this resource bound, which we call,
‘memory of size n’, the properties we are interested in verifying are of the form: can
a formula φ be derived with a memory of size n?; what is the minimum amount of
memory required to derive φ?; is there a relation between memory size and the number
of steps required to derive φ? what is the minimum amount of memory required to
derive φ with the shortest derivation?

To illustrate the impact of memory bounds in the reasoning process, consider an
agent with a knowledge base K composed of the following formulas:

A, A → B, B → C, C → D. (1)

If the only inference rule the agent uses is modus ponens, it will require a memory of at
least size 2 to derive D:

1. read A (memory contains {A})
2. read A → B (memory contains {A, A → B})
3. apply modus ponens and store B, overwrite A (memory contains {A → B, B})
4. read B → C, overwrite A → B (memory contains {B, B → C})
... . . .
n. until we apply all the rules and conclude D.

The deduction above requires only two formulas in memory at any given time as we can
overwrite the antecedent of an implication with the result of applying modus ponens,
load the next implication, apply modus ponens, and store the new result. Notice that
after adding new implications, say E → F , F → G, we still need only two formulas
in memory to derive G. Thus memory requirements do not necessarily depend upon
the number of formulas used in the derivation. However, if K contains the following
formulas

A, A → B, A ∧B → C, B ∧ C → D (2)

and the agent reasons using the inference rules modus ponens (MP) and conjunction
introduction (∧I ), then the derivation requires storing at least 3 formulas in memory at
any given time. Notice that the two knowledge bases (1) and (2) are logically equivalent.
Thus memory requirements can change for logically equivalent knowledge bases. Also,
it can be shown that adding conjunction elimination to the set of rules allows the agent
to derive D with only 2 formulas in memory. Thus, memory requirements also depend
upon the inference rules available to the agent.

In summary, there is a trade-off between space and time requirements, and the mem-
ory required for a derivation will depend on both K and the agent’s inference rules.
Given a procedure for determining how much memory a given derivation requires
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(and how much time it takes) for particular inference rules and K , an agent developer
can ensure that an agent has sufficient memory for a particular task, or, conversely en-
gineer a K which will allow an agent with particular inference capabilities and memory
size to derive a given formula.

3 Formal Model

We model resource-bounded agents as finite state machines (FSM) or transition sys-
tems. Let the internal language of the agent be some language L (e.g. propositional lan-
guage). The definition of a transition system is given relative to the following
components:

1. the bound n on the agent’s memory size
2. the agent’s reasoning rules
3. the agent’s knowledge base K ⊆ L
4. the agent’s goal formula AG ∈ L

The set of all subformulas of K and AG will be denoted by Ω. We abstract away from
the size of the formulas. However, given K , the maximal size of any formula which the
agent’s state has information about, will be fixed.

In the remainder of this section, we first define the language and transition systems
for ‘definite reasoning’ agents, which never do reasoning by cases or assumption-based
reasoning, and give an example of such an agent (rule-based agent). We then introduce
a more complex logic for agents that need to maintain a set of epistemic alternatives,
and give an example of such an agent (classical reasoner).

3.1 Definite Reasoners

The language of the logic BMLd (for bounded memory logic, definite case) is defined
relative to the agent’s internal language L. Well formed formulas (w.f.f.) are defined as
follows:

– If A is a formula of L, then B A (the agent believes A) is a w.f.f.
– If φ is a w.f.f., then ¬φ, EXφ (‘in one of the successor states, φ’) and EFφ (‘in

some future state, φ’) are w.f.f.
– If φ1 and φ2 are w.f.f., then φ1 ∧ φ2 is a w.f.f.

Other boolean connectives are defined in the usual way. We also define AX φ as
¬EX¬φ and AG φ as ¬EF¬φ.

A transition system M = (S, R, V ) consists of a set of states S, a serial binary
relation R on S (transitions between states) and an assignment V : S −→ P(Ω)
(assigning to the state the set of formulas the agent believes in that state). Notice that
V (s) is not a classical truth assignment, as it might contain complex formulas, e.g.,
A∧B, as well as contradictory formulas, e.g., A∧B,¬B ∈ V (s). To reflect the fact that
the agents have bounded memory, we postulate that V can assign at most n formulas
to any given state. The transitions which the agent can make depend on the agent’s
inference rules. In our model, we assume that one of the agent’s possible transitions



Verifying Space and Time Requirements for Resource-Bounded Agents 23

is ‘reading’ a K formula into its memory or ‘active state’. Reading a formula may
correspond to reading from flash memory, asking for user input, or reading data from a
server over the network.

The definition of a formula being satisfied in M, s ∈ S is as follows:

M, s |= B A iff A ∈ V (s)
M, s |= ¬φ iff M, s �|= φ
M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
M, s |= EXφ iff there exists a state t such that R(s, t) and M, t |= φ.
M, s |= EFφ iff there exists a sequence of states t1, . . . , tk such that for all i ∈
{1, . . . , k − 1}, R(ti, ti+1), t1 = s and M, tk |= φ

Let M be a class of models (for example, all models with the same knowledge base and
the same transition rules). A formula is M-satisfiable if it is true in some state in some
model in M. A formula is M-valid if it is true in every state in every model in M. The
definition of logical consequence is standard.

The bound n on the size of the agent’s memory is expressed by the following axiom
schema:

B(n) B A1 ∧ . . . ∧ B An → ¬B An+1 where Ai �= Aj if i �= j.

We can express that the agent can derive its goal AG from its knowledge base K as
EFB AG (there is some future state where the agent believes AG). The fact that a
formula is derivable in k steps can be expressed as EX kB AG (where EX k denotes k
applications of the operator EX ). Similarly, the fact that an agent needs at least k + 1
steps to derive a formula AG can be expressed as AX k¬B AG.

3.2 Rule-Based Reasoners

In this section we present a simple example of an agent which reasons using rules, e.g.,
ontology rules, or business rules. We assume that agent’s knowledge base consists of
ground atomic formulas and rules of the form A1∧. . .∧An → B, where A1, . . . , An, B
are atomic formulas (see, for example, [13]). An example of such rule would be

Parent(x, y) ∧Brother(y, z) → Uncle(x, z)

Essentially, such agents can only reason by a single inference rule:

A1(ā), . . . , An(ā) ∀x̄(A1(x̄) ∧ . . . ∧An(x̄) → B(x̄))
B(ā)

By generating all possible substitutions of constants occurring in the knowledge base
into the rule, we can reduce the knowledge base to a purely propositional set of formu-
las, consisting of propositional variables and implications of the form p1∧. . .∧pn → q.
Then the only rules the agent needs to derive all ‘rule-based’ consequences are conjunc-
tion introduction ∧I and modus ponens MP :

A1, A2

A1 ∧A2
∧I

A1, A1 → A2

A2
MP
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We show how to represent this reasoner as an FSM. Let V ′(s) be any subset of V (s)
which differs from V (s) in at most one formula and has cardinality at most n− 1. The
rule-based reasoner has the following transitions:

Read R(s, t) if V (t) = V (s)′ ∪ {A} for some A ∈ K
AND R(s, t) if A1, A2 ∈ V (s) and V (t) = V (s)′ ∪ {A1 ∧A2}.
MP R(s, t) if A1 ∈ V (s), A1 → A2 ∈ V (s), and V (t) = V (s)′ ∪ {A2}.
Reflexivity R(s, s)

For technical convenience (we will discuss a class of models without this assumption
later in this section), we also allow (but not require) ‘forgetting’ transitions of the form
R(s, t), where V (t) = V ′(s).

Notice that the definition of V ′(s) guarantees that after each transition R(s, t), the
memory bound is satisfied by V (t), i.e., |V (t)| ≤ n.

A formula AG is derivable from K using only modus ponens and conjunction in-
troduction with memory of size n if, and only if, MK,AG , start |= EFB AG, where
MK,AG is a rule-based transition model where states are assigned only formulas which
are subformulas of K and AG, V (s) for any s contains at most n formulas, and
V (start) = ∅. Indeed, a derivation of AG from K using only the allowed rules and
at most n formulas in memory corresponds to a branch in a state transition system de-
scribed above from an empty state to a state containing AG; and conversely, such a
branch can be converted into a derivation of AG from K . Similarly, AG is derivable
from K in k steps iff MK,AG , start |= EX kB AG.

The logical axioms corresponding to the rule-based reasoner’s transition rules are as
follows (we assume n ≥ 1 for A1):

A1 EXB A for A ∈ K
A2 B A1 ∧ B A2 → EXB (A1 ∧A2)
A3 B A1 ∧ B (A1 → A2) → EXB A2

Finally, we need to express that only transitions which are made according to the rules
are possible, and that in each transition at most one new formula is added and at most
one formula is overwritten.

A4 EX(B A1 ∧ B A2) → B A1 ∨ B A2

A5 EX(¬B A1 ∧ ¬B A2) → ¬B A1 ∨ ¬B A2

A6 EXB (A1 ∧A2) → B (A1 ∧A2) ∨ (B A1 ∧B A2)
A7 EXB A2 → B A2 ∨

∨
A1→A2∈K(B (A1 → A2) ∧ B A1) for A2 �∈ K and A2 �=

B ∧C

Note that the only axiom schema which depends on K is A7. Let ML(K, n, EX) be
the logic defined by the set of axiom schemata A1 - A7, B(n), together with the classical
and modal axioms for EX :

Cl tautologies of classical logic
K AX(φ → ψ) → (AXφ → AXψ)
T φ → EXφ



Verifying Space and Time Requirements for Resource-Bounded Agents 25

MP � φ, � φ → ψ ⇒ � ψ
N � φ ⇒ � AXφ

Let M(K, n) stand for the class of models where the knowledge base is K , the memory
size is n, and the only possible transitions are defined by the transition rules above. We
then have the following completeness result.

Theorem 1. ML(K, n, EX) is sound and strongly complete with respect to M(K, n).

Proof. To prove soundness, we will show validity of axioms A1 - A7. Axiom A1 is valid
because by the Read condition on R, it is always possible to make a transition to a state
which contains a formula from K . Axiom A2 is valid because by the AND condition
on R, if V (s) contains A1 and A2, it is always possible to make a transition to a state
which contains A1∧A2. Similarly, A3 is valid because of transition guaranteed by MP.
A4 is valid because if in some t reachable from the current state s, A1, A2 ∈ V (t),
then (since at most one new formula is added in each transition), either A1 or A2 are in
V (s). A5 is valid because if for some t reachable from s, A1 �∈ V (t) and A2 �∈ V (t),
then (since at most one formula is dropped), either A1 �∈ V (s), or A2 �∈ V (s). A6 says
that conjunctive formulas can only appear in the next state if both conjuncts are in the
current state (note that K only contains literals and implications with a literal in the
consequent, so AND is indeed the only way to derive a conjunction). Finally, A7 says
that the only way to add a formula A which is not in K and not a conjunction, is to
derive it by MP.

To prove strong completeness, we show how to construct a satisfying model for any
ML(K, n, EX)-consistent set of formulas. Take an ML(K, n, EX)-consistent set of
formulas Γ . Construct the satisfying model M = (S, R, V ) for Γ as follows. Let S
be the set of all ML(K, n, EX)-maximal consistent sets. For any formula A of L, let
A ∈ V (s) iff B A ∈ s. Let R(s, t) hold iff for every ψ ∈ t, EXψ ∈ s. The definition of
R is standard for modal logic completeness proofs, and we immediately get the Truth
Lemma: for every ψ and every s ∈ S, M, s |= ψ iff ψ ∈ s. Also, axiom T forces R
to be reflexive. Since Γ is consistent, it is included in some maximal consistent set s,
hence there is a state where Γ is satisfied. All we need to do now is to show that the
relation R in M satisfies the conditions defining M(K, n).

The easiest condition to demonstrate is the memory limit: for any state s, |V (s)| ≤ n.
Indeed, since all maximal consistent sets contain B(n), then none of them can contain
more that n distinct formulas of the form B A. Hence, V (s) cannot contain more than
n formulas.

Next, we need to show that all Read, AND and MP transitions required by the con-
ditions on R are possible in M .

Read. Assume s is a state and A ∈ K . We need to show that there is a state t such that
R(s, t), V (t) contains A, and lacks at most one formula contained in V (s). Because
of axiom A1, s has a successor t which contains B A. Hence V (t) contains A. By
the axiom A4, V (t) has at most one new formula compared with V (s). If A is not
in V (s), then this new formula is A. There is also (by A5) at most one formula
which is in V (s) but not in V (t), so V (t) is of the form V ′(s) ∪ {A}. If A is
in V (s), then by reflexivity of R, trivially there is a t = s such that R(s, t) and
V (t) = V ′(s) ∪ {A}.
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AND. Assume s is a state and V (s) contains A1 and A2. We need to show that there
is a state t such that R(s, t), V (t) contains A1 ∧ A2, and V (t) is of the form
V ′(s) ∪ {A1 ∧ A2}. Because of axiom A2, s has a successor t which contains
B (A1 ∧ A2). Hence V (t) contains A1 ∧ A2. The rest of the argument is the same
as for Read.

MP. Similarly, by A3, is s contains A1 and A1 → A2, then it has a successor t such
that A2 ∈ V (t) and V (t) = V ′(s) ∪ {A2}.

We have shown that all the transitions required by the conditions on M(K, n) indeed
exist. Now we need to show that only allowed transitions exist. We have already seen
that if R(s, t) then V (t) has at most one extra formula and at most one missing formula,
compared to V (s) (this is forced by axioms A4 and A5). The new formula has to be
added by one of the transitions Read, AND or MP: this is guaranteed by A6 and A7.
However, we cannot force a condition that a transition always adds a new formula;
therefore our technical assumption allowing forgetful transitions.

3.3 More General Reasoners

In this section, we model reasoners which can reason by cases, or in general consider
hypothetical states; this means that their transitions do not necessarily follow the logical
consequence relation. We also extend the language to express disbelief as well as belief.

Consider a reasoner who believes:

A ∨B, A → C, B → C.

To derive C, it has to reason by cases: assume A; derive C. Then, assume B; derive
C. Hence, it is safe to believe C. However, if the process of assuming A corresponds
to a transition to a state where A is believed, the modelling is not ‘safe’ — the agent’s
beliefs are not justified by valid inference steps. In the state where it assumes A, the
agent should remember that this is just one of the epistemic alternatives, and that in
others A is false and B is true.

To deal with such reasoners, we add an extra set of ‘epistemic alternatives’ or possi-
ble worlds to each state. Intuitively, a formula is now believed in a state if it is true in
all of the epistemic alternatives associated with this state. We express this as �B A.

The language of the logic BML (for bounded memory logic) extends the language
of BMLd by adding extra clauses:

– If A is a formula of L, then B̄ A (the agent disbelieves A) is a w.f.f.
– If φ is a w.f.f., then ♦φ is a w.f.f.

We also define �φ as ¬♦¬φ.
For such general reasoners, we can express that the agent can derive AG from its

knowledge base K as EF�B AG (there is some future state where in all epistemic
alternatives the agent believes AG).

A BML transition system M = (S, W, R, Y, T, F ) consists of a set of states S, a
set of possible worlds or epistemic alternatives W , a binary relation R on S, a func-
tion assigning to each state a set of epistemic alternatives Y : S −→ P(W ), and two
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assignments T : W −→ P(Ω) and F : W −→ P(Ω) which say whether the value of
an (internal language) formula in a world is true or false (where, as before Ω is the set of
subformulas of K and AG). As before, to reflect the bound on the agent’s memory, we
require |T (w)| + |F (w)| ≤ n, for any given state w. Moreover, the truth assignments
should be consistent, i.e., T (w) ∩F (w) = ∅. The following truth definitions have been
added or modified compared to BMLd. Note that we talk about truth in a world and
truth in a state:

M, w |= B A iff A ∈ T (w)
M, w |= B̄A iff A ∈ F (w)
M, s |= ♦φ iff there exists w in Y (s), such that M, w |= φ.

The bound n on the size of the agent’s memory is expressed by the following axiom
(which replaces B(n) defined for BMLd):

B(n)′ �(
∼
B A1 ∧ . . .∧

∼
B An → ¬

∼
B An+1), where

∼
B Ai stands for either B Ai or

B̄ Ai and Ai �= Aj for all i, j ∈ {1, . . . , n + 1} such that i �= j.

3.4 Classical Reasoners

In this section we present a simple example of a classical reasoner, which, given unlim-
ited memory, is capable of deriving any classical consequence of its knowledge base.

Epistemic alternatives are introduced when the classical reasoner applies non-deter-
ministic rules, such as disjunction elimination. Suppose, for example, that the agent
has A ∨ B in its knowledge base and starts in a state s0, which has a single epistemic
alternative w0 with T (w0) = F (w0) = ∅. The agent can read A ∨ B and transit to
a state s1 with a single epistemic alternative w1, such that A ∨ B ∈ T (w1). Now the
agent applies a non-deterministic rule for disjunction; it may assume that both disjuncts
are true, or A is true and B is false, or vice versa. Formally, this means that the agent
transits to a state s2 where the epistemic alternatives are:

1. w11 with A, B ∈ T (w11),
2. w12 with A ∈ T (w12) and B ∈ F (w12),
3. w13 with B ∈ T (w12) and A ∈ F (w12).

Note that the classical reasoner cannot derive A from A∨B in the sense of our criterion
of EF�B A being true: A is true in w11 and w12, but false in w13, so s2 does not satisfy
�B A.

The transition relation R between states is defined in terms of expansion relation
between epistemic alternatives�. Expansion corresponds to applying an inference rule
to formulas in the epistemic alternative; in the example above, w1 is expanded (by
applying the rule of disjunction elimination) to w11, w12, w13. Formally, R(s, t) holds if
Y (s) = {w1, . . . , wm}, and for some wi ∈ Y (s), Y (t) = (Y (s)\{wi})∪{v : wi � v}.

Before we define the expansion relation, we need a few preliminary definitions and
comments. Note that the classical reasoner agent can construct new formulas in addition
to decomposing formulas. We only allow the construction of formulas which are in Ω
(the set of subformulas of K and AG). This does not affect the completeness of agent’s
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rules (since these are the only formulas it may possibly need in the derivation of AG

from K), but allows us to represent it as a finite state machine.
Since the agent can both believe and disbelieve formulas (and its language contains

negation), an issue of inconsistent possible worlds arises. An agent cannot make a tran-
sition to a possible world where the same formula is assigned to true and false. All rules
therefore have to have a proviso that if w � v then it impossible, for any formula A, to
have A ∈ T (w) and A ∈ F (v) or vice versa:

Recall. w � v and A ∈ T (v) ⇒ A �∈ F (w), and w � v and A ∈ F (v) ⇒ A �∈ T (w)

Here is a list of possible types of transitions:

Read. w � v if for some formula A ∈ K , A ∈ T (v), and otherwise T (v), F (v)
contain the same formulas as T (w), F (w), apart from possibly omitting one (over-
written) formula. Observe that w can be expanded by the Read transition in as
many ways as there are formulas in K , and choices for overwriting a formula in
T (w) ∪ F (w) (including a choice to overwrite nothing). In the modelling section,
these two formulas (a formula added and a formula overwritten) are made explicit
parameters in defining the transition.

Split. w � v1 and w � v2 if for some formula A ∈ Ω with A �∈ T (w) ∪ F (w),
A ∈ T (v1), A ∈ F (v2), and otherwise the truth assignment in v1, v2 is the same
as in w, with at most one formula in each world being overwritten, and Recall is
satisfied. This transition rule enables the agent to do reasoning by cases, and is
equivalent to having A ∨ ¬A as an axiom, for every A ∈ Ω.

ExContradictio. w � v if for some A, A ∈ T (w) and ¬A ∈ T (w), or A ∈ F (w) and
¬A ∈ F (w), and T (v) contains AG.

makeNot. w � v if for some ¬A ∈ Ω, A ∈ T (w) ∪ F (w), and ¬A ∈ T (v) ∪ F (v)
with the opposite sign, otherwise the truth assignment in v is the same as in w (with
at most one formula possibly overwritten), and Recall is satisfied.

elimNot. w � v if for some ¬A ∈ Ω, ¬A ∈ T (w)∪F (w), and A ∈ T (v)∪F (v) with
the opposite sign, otherwise the truth assignment in v is the same as in w (with at
most one formula possibly overwritten), and Recall is satisfied.

makeAnd. w � v if for some A1 ∧A2 ∈ Ω, A1, A2 ∈ T (w) ∪ F (w) and A1 ∧A2 ∈
T (v) ∪ F (v), so that the value of A1 ∧A2 in v is the logical ‘and’ of the values of
A1, A2 in w, otherwise the truth assignment in v is the same as in w (with at most
one formula possibly overwritten), and Recall is satisfied.

elimAnd. w � v if A1 ∧ A2 ∈ T (w) ∪ F (w), A1, A2 ∈ T (v) ∪ F (v), so that the
logical ‘and’ of the truth value of A1 and A2 in v equals to the value of A1 ∧ A2

in w, otherwise the truth assignment in v is the same as in w (with at most two
formulas possibly overwritten), and Recall is satisfied. If the conjunction is true in
w, there is only one possible truth assignment to the conjuncts in v, but if it is false,
then w can be expanded by this rule to worlds where one of the conjuncts is true
and another one false, or both false.

Transition rules for other connectives are defined in similar fashion.

Theorem 2. A classical reasoner with unbounded memory can derive AG from K
whenever AG is a classical consequence of K .
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Proof. Let AG be a classical consequence of K . If K is inconsistent, we use ExContra-
dictio to derive AG. If K is consistent, the strategy for deriving AG is as follows. The
reasoner does not overwrite any formulas. It reads all formulas from K and decomposes
them down to all possible assignments to propositional variables in K . If variables of
AG are a subset of the variables of K , then each branch in the previous execution can be
continued with a successful composition of AG (since every assignment satisfying K
satisfies AG. Else let V ar(AG)\V ar(K) = {q1, . . . , qm}. Then, continue each branch
of the previous derivation with m splits on each of qi. This will generate all possible
assignments to V ar(K) ∪ {q1, . . . , qm} which make K true. By assumption, each of
them makes AG true, so again on each branch AG can be successfully assembled.

4 Verifying Reasoning Capabilities

The problem of identifying the existence (and the minimal length) of a deduction for AG

from a knowledge base K , for an agent with bounded memory modelled as a transition
system M can be recast as a planning problem: find a control strategy for M (a plan)
such that, starting from any state in K , it leads to some state in AG. The plan is the
proof of AG.

In general, M is a nondeterministic transition system, since applying a rule may lead
to several epistemic alternatives, as shown e.g. in Sec. 3.4 for the case of disjunction
elimination. Thus, we are interested in strong plans [6]: tree-structured plans such that
their execution leads to the goal, for every possible outcome of the actions in the plan.

Among the few planners capable to deal with strong planning for nondeterministic
domains, we selected MBP, a system coupling effective algorithms with an input lan-
guage which allows a concise description of transition systems in logical terms. In this
section, we provide a high-level description of the way the proof existence problem is
recast as a planning domain in MBP. We take as reference the classical reasoner, leaving
the simpler case of rule-based reasoning to the reader. For reasons of space, we will
omit the encodings of the rules associated to disjunction and implication, which are
analogous to the one for conjunction.

In the following, we partition Ω into the subsets Ω0, Ω¬, Ω∨, Ω∧, Ω→ which contain
respectively atomic formulae, and formulae whose top-level connective is a negation,
disjunction, conjunction or implication. Moreover we define the functions l(·) and r(·)
which return the left/right parts of non-atomic formulas. We omit their trivial definition,
and we take the convention that l(¬φ) = φ.

The core of the encoding consists in representing the state transition system de-
scribed in Section 3 as a planning domain. Formally, a planning domain is a triple
(S, Act, R), where S are the states of the domain, Act is a set of actions, and R ⊆
S ×Act× S is the transition relation, describing the outcomes of the action execution;
an action is executable over a state s iff ∃(s, α, s′) ∈ R. Our mapping views actions
as deduction rules and domain states as epistemic states of the agent. In a planning
domain, the state is represented by means of a set of state variables. In our case, the
set V will be composed of |Ω| three-valued state variables. We will denote with V (φ)
the value of the variable associated to φ. V (φ) corresponds to the believed value of
φ (� or ⊥), or indicates that nothing is believed about it (U ), representing the T , F
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assignments of the transition system for BML. The memory bound condition is en-
forced by a constraint Ψ≤n on R, of the form |{A : V (A) �= U}| ≤ n, directly repre-
sented in MBP as a TRANS Ψ≤n construct.

The actions of the domain represent every possible instance of the deduction rules
(Read, Split, etc.) over the formulas in Ω. Such instantiation must also explicitly con-
sider, for a given action, every possible choice of the formula(s) to be overwritten by
the newly produced formula(s). As such, actions feature one argument in Ω represent-
ing the formula to be read, split, or composed, and one or two additional arguments in
Ω′ = Ω ∪ {A0}, indicating the formula(s) to be overwritten, and the fictitious formula
A0 if no rewriting occurs. This defines the range of the action variable α in the planning
domain:

α∈
⋃

A∈K
B∈Ω′

Read(A, B)∪
⋃

A∈Ω
B∈Ω′

Split(A, B)∪
⋃

A∈Ω
B∈Ω′

ExC(A, B)∪
⋃

A∈Ω¬
B∈Ω′

makeNot(A, B)∪

⋃

A∈Ω¬
B∈Ω′

elimNot(A, B) ∪
⋃

A∈Ω∧
B∈Ω′

makeAnd(A, B) ∪
⋃

A∈Ω∧
B1 �=B2

B1,B2∈Ω′

elimAnd(A, B1, B2)

The executability preconditions and the effects of the actions are encoded in MBP as
an implicitly conjoined set of constraints over the transition relation, again of the form
TRANS Ψ .

The executability preconditions correspond to the constraints on the current world in
the transition rules in Section 3:

α = Read(A, B) → A ∈ K

α = ExC(A, B) → U �= V (A) = V (l(A))
α = makeNot(A, B) → V (l(A)) �= U

α = elimNot(A, B) → V (A) �= U

α = makeAnd(A, B) → V (l(A)) �= U ∧ V (r(A)) �= U

α = elimAnd(A, B1, B2) → V (A) �= U

The (possibly nondeterministic) effects of an action are represented by partitioning the
effects over the formula(s) read or built by the rule, and those over the formula(s) that
are possibly overwritten by the result(s) of its application. The former are written in
terms of the values V must attain for the affected formula(s) after the action execution
(i.e. at the next step, denoted with X), constrained by the current values of V , according
to the definitions in Section 3.

α = Read(A, B) → X(V (A) = �)
α = Split(A, B) → X(V (A) ∈ {�,⊥})
α = ExC(A, B) → X(V (AG) = �)
α = makeNot(A, B) → X(V (A)) = ¬(V (l(A)))
α = elimNot(A, B) → X(V (l(A))) = ¬(V (A))
α = makeAnd(A, B) → X(V (A)) = V (l(A)) ∧ V (r(A))
α = elimAnd(A, B1, B2) → V (A) = X(V (l(A)) ∧ V (r(A)))
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The following constraints ensure that overwritten formulas become undefined:

α = Read(A, B) ∧B �∈ {A0, A} → X(V (B) = U)
α = Split(A, B) ∧B �∈ {A0, A} → X(V (B) = U)
α = ExC(A, B) ∧B �∈ {A0, AG} → X(V (B) = U)
α = makeNot(A, B) ∧B �∈ {A0, A} → X(V (B) = U)
α = elimNot(A, B) ∧B �∈ {A0, l(A)} → X(V (B) = U)
α = makeAnd(A, B) ∧B �∈ {A0, A} → X(V (B) = U)
α = elimAnd(A, B1, B2) ∧B1, B2 �∈ {A0, l(A), r(A)}→X(V (B1)=V (B2)=U)

The constraints above must be conjoined with those representing the Recall proviso,
and the provisos on the inertiality of the values of non-affected formulas. Recall is
expressed by adding, for each A ∈ Ω, two constraints of the form V (A) = � →
X(V (A)) �= ⊥ and V (A) = ⊥ → X(V (A)) �= �. Inertiality is expressed by adding
constraints stating explicitly that unless a formula is overwritten or produced, it does
not change its value, e.g.:

α = makeAnd(A, B) ∧A′ �∈ {A, B} → X(V (A′)) = V (A′)

Given the encoding above, the planning problem is described by an initial state where
∀A ∈ Ω : V (A) = U , and by a goal state V (AG) = �.

MBP implements many possible search styles. We chose breadth-first backward
search which guarantees that the shortest plan is selected. The computational burden
imposed by such a search style is effectively constrained by the use of symbolic repre-
sentation techniques that allow a very compact encoding, and an efficient handling of
extremely large state sets at once; details can be found in [6].

5 Experiments

We present a simple example to illustrate the effect of memory size on the minimum
length of a derivation. Consider the set of rules

A ∧B → H B ∧ I ∧ E → L F ∧G → M

A ∧B → C D ∧A ∧H → I I ∧ L ∧M → N

which may form part of a larger knowledge base. Suppose a designer of a system which
uses a knowledge base containing these rules wishes to verify, e.g., that from the fol-
lowing basic facts {B, D, E, F, G} an agent running on a PDA with a memory of size
n can infer N ∧C. In addition, the designer may be interested in how increases in mem-
ory size affect the number steps required for the derivation, e.g., if they wish to trade
memory for response time.

Figure 1 shows the length of the shortest deduction of the formula N∧C for different
memory sizes as determined by the MBP planner. Deriving the target formula requires
a memory of at least size 3. For memory size of 1 and 2 the system quickly determines
that there are no possible derivations of the target formula. Let us focus on the lower
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Fig. 1. Running the example

curve. With 3 memory cells the deduction requires 31 steps. With a memory of size
4, the number of steps in the deduction drops to 27. This is because the fourth cell is
used to store an intermediate result which is used more than once in the derivation and
does not need to be recomputed, thus shortening the inference process. In this example
further increases in the amount of memory do not result in further reductions in the
length of derivation. These results do not consider explicitly the action of overwriting a
memory location, that is, steps in the derivation consist either of the application of an
inference rule or reading a formula from K . In computing the length of a deduction we
may also want to explicitly consider the action of over-writing a memory location (we
can think of this step as choosing which location in memory to over-write). The upper
curve in Figure 1 shows the length of the derivations including these extra steps. With a
memory of size 3, the number of steps in the derivation is 59 (31 steps + 28 over-write
operations). With a memory of size 4 this drops to 50 steps (27 steps + 23 over-write
operations). As can be seen, the number of times a cell in over-written continues to drop
with increasing memory size, until with a memory of size 27, when we can store all the
subformulas used in the derivation in memory, the length of the derivation is the same
as in the previous case.

6 Related Work

Our work is related to other work on logics of knowledge and belief, for example [10].
Much of this work assumes that the agent’s knowledge is deductively closed, and there-
fore does not try to model the time and space restrictions on an agent’s ability to derive
the consequences of its beliefs. There is a growing body of work in which the agent’s
deduction steps are explicitly modelled in the logic, for example [9,7,2,1]. These ap-
proaches make it possible to model the time it takes the agent to arrive at a certain
conclusion, but not the space required. A different kind of limitation on the depth of
belief reasoning allowed is studied in [12]. Limitations on memory are considered in
fewer approaches; for example, in work on the logic of games [19], where an agent
with limited memory can base its strategy only on a limited portion of the game’s
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history, and in some of the work on step logic [8], which considers both the time and
space limitations on the agent’s knowledge. Step logic makes use of the notion of a
step in reasoning. Given a set of formulas X and a set of inference rules I , an agent
performs a step of reasoning by adding the consequents of any applicable inference
rule in I to X . If a formula φ had been derived in this way at step t, it is said to
be a t-theorem. [8] address the issue of the increasing number of t-theorems at each
step, which require a larger and larger memory size. However, rather than attempting
to verify the space required to solve a given problem, [8] are concerned with restricting
the size of short term memory to isolate any possible contradictions, thereby avoiding
the problem of swamping: deriving all possible consequences from a contradiction. The
emphasis on perfect rationality in AI was challenged by Russell in [17] in favour of
bounded optimality, (optimality relative to the time and space bounds on the device the
agent program is running on).

The problem of formal verification of multi agent systems has lead to a growing
body of work, especially in the area of multi agent model checking [3,15]. The existing
work, however, is mainly focused on logically omniscient agents, that is, agents who
instantaneously believe all the logical consequences of their basic beliefs, and no time
and space limitations are taken into account.

The connection between deduction and planning has long been established for a va-
riety of logics, e.g. temporal, linear and propositional logics, see [14,5,16,11]. The ex-
isting work, however, focused on using effective theorem provers to build plans, rather
than exploiting a planner to build a deduction. To the best of our knowledge, ours is the
first experiment in this direction.

7 Conclusions and Future Work

In this paper, we have attempted to take seriously the idea that reasoning is a process
which requires memory, and developed a framework for representing and verifying
memory-bounded reasoners. While the temporal aspect of reasoning has been studied
before, we believe that our treatment of the memory aspect is novel. We have proposed
a new kind of epistemic logic where memory is explicitly modelled. The logic is inter-
preted on state transition systems, where the reasoner’s state can contain only a fixed
finite number of formulas (beliefs), and transitions correspond to application of infer-
ence rules by the agent. By specifying the state transition system as an input to the MBP

planner, we can automatically verify the lower bounds on memory required by the agent
to derive a certain formula.

In future work, we plan to remove some idealisations made in the present work,
such as constant size of formulas, and paying no penalty in terms of memory for
backtracking.

Acknowledgements. This work was supported by the Royal Society UK-Italy Joint
Project grant ‘Model-checking resource-bounded agents’.
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Abstract. Pattern databases are dictionaries for heuristic estimates
storing state-to-goal distances in state space abstractions. Their effec-
tiveness is sensitive to the selection of the underlying patterns. Espe-
cially for multiple and additive pattern databases, the manual selection
of patterns that leads to good exploration results is involved.

For automating the selection process, greedy bin-packing has been
suggested. This paper proposes genetic algorithms to optimize its out-
put. Patterns are encoded as binary strings and optimized using an ob-
jective function that predicts the heuristic search tree size based on the
distribution of heuristic values in abstract space.

To reduce the memory requirements we construct the pattern
databases symbolically. Experiments in heuristic search planning indi-
cate that the total search efforts can be reduced significantly.

1 Introduction

The ultimate goal for an efficient exploration is the automated creation of (admis-
sible) search heuristics. By applying state space abstractions, heuristic estimates
correspond to solutions in simplified problem spaces. The underlying problem
graph is abstracted, e.g., in a form that nodes are contracted or new edges are
inserted. Such abstractions are homomorphisms, i.e., for each path in the con-
crete state space there is a corresponding path in the abstract one. This notion
of abstraction matches the one used in verification for abstraction refinement [4]
and predicate abstraction [1,45].

Gaschnig [17] proposed that the cost of solutions can be computed by exact
solution in abstract space. He observed that search with abstract information
can be more time-consuming than with breadth-first search. Voltorta [49] has
proven this conjecture, showing that heuristic search algorithms that explore
state space abstractions for each encountered state from scratch (and that do
not memorize abstract states) cannot possibly be better than blind search [20].
Absolver [40] was the first system to break the barrier imposed by his theorems.
In order to reduce the number of revisits in abstract state one either has to
memorize abstract state information on-the-fly or precompute it for the entire
search space. Pattern databases [5] correspond to complete scans of the (inverted)
abstract space before applying the search algorithm in the concrete space. A
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mixed strategy (between memorizing and precomputing) is considered in [30]
and revisited in [27].

The success story of searching with pattern databases is long, starting with
first optimal solutions in Rubik’s Cube [35] and large savings in sliding-tile
puzzles [5,36]. Applied for the multiple sequence alignment problem, pattern
databases correspond to lookup tables for alignments of a smaller number of
sequences [38,52]. In finding the best parse of a sentence [33], a pattern database
entry correlates to the cost of completing a partial parse; the abstraction is de-
rived by simplifying the grammar. TSP with asymmetric costs and precedence
constraints has been analyzed by [24] using pattern database techniques. Pat-
tern database heuristics have been applied for co-operative planning in computer
games [47], where many agents search for individual paths but are allowed to
help each other to succeed. First successful applications of pattern databases for
verification are due to [11] (explicit-state model checking), [44] (symbolic model
checking), and [39] (real-time model checking). In all approaches, even though
the construction is automated, patterns were provided manually, such that, in
essence, pattern selection remains a domain-dependent feature.

As they operate at the limit of main memory, a compact and space-efficient
representation of pattern databases is essential. This paper exploits a space-
efficient representation of pattern databases based on BDDs [3], which – by
sharing binary state vectors – can lead to large memory savings. Instead of
transforming an already constructed database, we apply a construction process
that is throughout symbolic. Nonetheless, the main objective of this paper is to
address the problem of automated pattern selection for an improved search. We
embed our approach in domain-independent action planning, where automated
pattern selection is mandatory. In this research area, the use of multiple [29]
(often disjoint [36]) databases is frequent. So far, only greedy bin packing al-
gorithms have been applied that terminates with the first established pattern
set [7,21].

The number of possible patterns for selection is large. In case of state space
abstractions that include don’t cares in the state vector, the complexity is expo-
nential in the number of remaining vector entries. In case of general relaxations of
the state vector (e.g. by data abstraction, mapping variable domains to smaller
sets) the number of possible choices almost becomes intractable. So even for
the choice of a single pattern, we are facing a hard combinatorial optimization
problem. If multiple abstractions are used, the number of choices is even worse.

In order to predict their pruning1 effect, pattern databases have to be con-
structed. Unfortunately, the efforts for constructing pattern databases are high,
as their sizes (measured in the number of abstract states) are large.

Especially in combinatorial problems with large state spaces and unknown
structures, optimization algorithms adapted from nature – such as evolutionary

1 Pattern database heuristics do not prune the exploration in the strong sense in that
they eliminate transitions from the state space. If no error/goal is present, then
there is no search reduction. On the other hand, if there is, then the enforced order
of expansion can save many states to be looked at.
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strategies or swarm optimization techniques [6] – are recommended. Given the
discrete structure of the pattern selection problem, we have chosen genetic algo-
rithms [26], which are widely used and adapt nicely: the proposed encoding of
patterns into chromosomes is accessible for a human, and we can expect to obtain
insights to important schemas for pattern selection. There are already some re-
ports on attempts to unify planning and evolutionary computing [2,18,51,41,48],
but all are concerned about plan finding (or plan refinement) and none of them
addresses the problem of the automated creation of search heuristics.

The paper is structured as follows. First we review pattern databases as ap-
plied in optimal heuristic search planning. Then we turn to genetic algorithms for
the automated inference of the patterns. Starting with the encoding of patterns
into chromosomes, we present the design of genetic operators for the pattern se-
lection problem. Experiments report on improving the mean heuristic value and
on reducing the resulting search efforts for a selection of challenging planning
domains. Finally, we draw conclusions and indicate further research avenues.

2 Pattern Databases in Planning

Action planning refers to a world description in logic2. A number of atomic
propositions, atoms for short, describe what can be true or false in each state of
the world. By applying operations in a world, we arrive at another world where
different atoms might be true or false. Usually, only few atoms are affected by
an operator, and most of them remain the same.

Let AP be the set of atoms. A planning problem (in STRIPS notation) [16]
is a finite state space problem P =< S,O, I,G >, where S ⊆ 2AP is the set of
states, I ∈ S is the initial state, G ⊆ S is the set of goal states, and O is the set
of operators that transform states into their successors. We often have that G is
described by a simple list of atoms. Operators O ∈ O have preconditions pre(O),
and effects (add(O), del(O)), where pre(O) ⊆ AP is the precondition list of O,
add(O) ⊆ AP is its add list and del(O) ⊆ AP is its delete list. Given a state S
with pre(O) ⊆ S, its successor S′ = O(S) is defined as S′ = (S\del(O))∪add(O).

2.1 Admissible Heuristics in Planning

Admissible heuristics for planning underestimate the shortest path distance of
the current state to the goal. They are important to guarantee optimality in
heuristic search algorithms like A* and IDA*. The max-atom heuristic [22] is an
approximation of the optimal cost for solving a relaxed problem in which the
delete lists are ignored. Its extension max-pair improves the information without
loosing admissibility, approximating the cost of atom pairs. The heuristic h+ [25]
is another extension to max-atom defined as the length of the shortest plan that

2 For the sake of brevity, the presentation of the paper restricts to propositional plan-
ning. However, the design of planning pattern databases is applicable to complex
planning formalisms too.
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solves the relaxed problem with ignored delete lists. The heuristic is admissible,
but solving relaxed plans is computationally hard.3

2.2 Explicit-State Planning Pattern Databases

Explicit-state planning pattern databases as proposed by [7,21] refer to state
space abstraction, where some atoms are omitted from the problem description.

The basic idea for computing a heuristic with pattern databases is to ana-
lyze the abstraction of the concrete state space prior to the search [5]. In this
abstract state space, a (complete) backward exploration (starting with the ab-
stract goal) computes accurate goal distances and stores them in a lookup table4.
This then information guides the concrete search process. More formally, the ab-
straction [34] of a planning problem P = < S,O, I,G > wrt. a set of atoms
R is defined as P|R = < S|R,O|R, I|R,G|R > with S|R = {S ∩ R | S ∈ S},
G|R = {G ∩ R | G ∈ G}, and O|R = {O|R | O ∈ O}, where O|R for O ∈ O is
given as (pre(O) ∩ R, add(O) ∩ R, del(O) ∩ R). As the goal distance in abstract
state space drop by not more than 1, pattern databases are consistent, leading to
monotone cost functions in A* [42]. The principle of abstracting atoms has been
extended to (automatically inferred and mutually exclusive) atom groups [7]. The
approach reflects a multi-variate (finite domain) variable encoding of a state [23].
As an example, in Blocksworld the variable on(X, a) (where X represents any
available block a, b, c, or d), encodes the atoms on(d, a), on(c, a), on(b, a) and
on(a, a). As only one block can lay on top of a, all atoms in a state variable
(group) are mutually exclusive. Variables are distributed into patterns, where
each pattern corresponds to an abstraction of the state space: abstract states
are assignments of atoms to state variables of the chosen pattern. Using this
approach each concrete state is mapped to an abstract state. As seen above the
projection extends to operators, intersecting the precondition, add and delete list
with the pattern. The selection of patterns that lead to the best search reduction
is computationally hard and critically influences the quality of the estimate [21].

For multiple pattern databases [29], in each abstraction i, i ∈ {1, . . . , k},
and for each state S we compute estimated costs hi(S). The maximum hm(S) =
maxk

i=1 hi(S) is a consistent estimate, the cumulation ha(S) =
∑k

i=1 hi(S), how-
ever, is not necessarily admissible, since in general we cannot expect that each
operator contributes to only one pattern database abstraction. In case an ad-
missible heuristic is obtained by adding the values, we call the databases dis-
joint [36]. In order to resolve the admissibility problem in general, we have to
grant that each operator has zero costs for all but one pattern databases. This
induces that the backward in abstract space operates on a weighted problem
graph. For this particular single-source shortest-paths problem, we adapt BFS.
In each BFS level, each zero-cost operator is fired until a fixpoint is reached.
3 The heuristic h+ can, however, efficiently be approximated by the number of oper-

ators in a parallel plan that solves the relaxed problem. The applied approximation
sacrifices the admissibility of the estimate making it inadequate for optimal planning.

4 As inverse operator application is not always immediate, it is possible to apply back-
ward search to the inverse of the state space graph generated in forward search [11].
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2.3 Symbolic Planning Pattern Databases

The main limitation for applying pattern databases in practice is the restricted
amount of (main) memory. Many strategies for leveraging the problem have been
proposed. Symmetries allow reusing pattern databases [5], while lookups in dual
pattern databases additionally apply to permutation problems [15]. Compressed
pattern databases [14] approximate abstract states-to-goal distances. Given an
upper bound on the optimal goal distance in the concrete state space, pattern
database construction can be pruned [52]. On-demand pattern databases [13]
suspend and resume a backward A* exploration of the abstract space.

A space-saving alternative for pattern databases that allow sharing of the
state vector is the trie data structure. In a trie, each path from the root to
a leaf corresponds to a scan of the state vector. Tries are commonly used in
pattern databases for the multiple sequence alignment problem [46]. States with
same prefixes share their representations. Tries can be multi-variate (each branch
corresponds to a state vector entry of finite domain) or binary (each path corre-
sponds to the binary representation of the state vector). Tries can be contracted
by merging edges.

The main advantage of using BDDs [3] is an efficient and unique representation
for sets of states. Intuitively, BDDs are binary tries in which further reduction
rules have been applied to obtain a directed and acyclic graph structure. More
precisely, a BDD represents the characteristic function of a set of states, which
evaluates to 1 if and only if the binary state vector is a member of that set. The
characteristic function is identified with the set itself.

Transitions are also formalized as relations, i.e., as sets of tuples of prede-
cessor and successor states, or, more precisely, as the characteristic function of
such sets. This allows to compute the image in form of a relational product.
It conjoins the state set (formula) with the transition relation (formula) and
quantifies the predecessor variable. This way, all states are determined, that can
be reached by applying one action to a state in the input set. Iterating the pro-
cess starting with the characteristic function of the initial state yields a symbolic
implementation of BFS. The application of A* with BDDs has been initially pro-
posed by [12], extensions are found in [31] (branching partitioning), [43] (weak
heuristics), and [19] (ADDs). All implementations rely on small edge weights.

Symbolic pattern databases [8] are pattern databases that have been con-
structed symbolically for a latter lookup in either symbolic or explicit-state
heuristic search. The bi-directional definition of the transition relation allows
to change the search direction by quantifying the posterior variables set in the
relational product. Each state set (in a breadth-first/shortest paths layer) is
efficiently represented by a corresponding characteristic function. Different to
the compression of the state set by compiling the outcome of an explicit-state
pattern database, the symbolic construction operates on the compressed rep-
resentation of the state and the action sets. External symbolic planning pat-
tern databases [53] are symbolic planning databases that additionally exploit
secondary storage devices such as hard disks to lessen the RAM load during
construction and search.
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Fig. 1. Effect of symbolic pattern database construction

A better memory performance often favors symbolic to explicit-state pattern
database construction: Fig. 1 displays an example of a typical Blocksworld prob-
lem instance. The number of BDD nodes is by far smaller than the number of
represented states. Moreover, BDD nodes are small,5 while the explicit-state
sizes grow with size the problem instance. The mean heuristic value (for both
cases) is 22.16. Besides memory savings the key performance of symbolic pattern
databases for the purpose of this paper are time savings. For example, the above
pattern database contains 27.22 billion entries generated in 109 seconds. Com-
pared to explicit-state search, this corresponds to about 250 million expanded
states per second.

3 Automated Pattern Selection

We have indicated that finding good patterns is involved, as there are many
possible choices, especially if multiple pattern databases have to be considered.
Manual pattern selection is tedious and implies that the planning process in-
evitably becomes problem-dependent. So far, automated pattern selection is a
rather unresolved challenge, even if some recent progress has been made.

For explicit-state construction of multiple pattern databases, one has simpli-
fied the problem of finding a suitable partition to the bin-packing problem [7,21].
The general idea is to distribute state variables into bins in such a way that a
minimal number of patterns is used; a state variable is added to an already ex-
isting bin, until the (expected) abstract state space size exceeds main memory.

5 BDD nodes frequently consume a small number of bytes for encoding the level, the
0- and 1-successor and some auxiliary information like a hash value and markings.
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Procedure GA
t ← 0

P (t) ← Initialize

Evaluate(P (t))

while (κ(P (t)))

P ′(t) ← Recombination(P (t))

P ′′(t) ← Mutation(P ′(t))
Evaluate(P ′′(t))
P (t+1) ← Selection(P ′′(t))
t ← t + 1

Fig. 2. Standard genetic algorithm

Adding a variable to the pattern corresponds to a multiplication of its domain
size to the (already computed) abstract state size (if possible). As a result, the
bin-packing variant needed for automated pattern selection is based on multi-
plying variable domain sizes (rather than adding). Bin-packing is NP-complete,
but efficient approximations like the first- or best-fit have been used.

For the implementation of automated pattern selection we adapt a genetic
algorithm (GA) [26]. A generic implementation using the evolutionary operations
for evaluation, recombination, mutation, and selection is shown in Fig. 2, where
κ is the termination criterion, and t is the current iteration.

Representation. Patterns are represented as binary chromosomes of size p×n,
where n is the number of atoms (groups) and p ≤ n is the number of active pat-
terns. In the columns, state variables are indexed, while in the rows patterns are
selected. Therefore, a chromosome represents the distribution of state variables
into multiple pattern databases. Fig. 3 illustrates an example: in the first pat-
tern the groups 1, 5, 6, 8 and n are included, whereas in the second pattern the
groups 3, 5 and 7 are present.

Chromosomes are valid6 if all patterns respect the memory threshold M (the
bin size). Formally speaking, if vi denotes the set of atoms in state variable i,
i ∈ {1, . . . , n}, and ci,j is a bit indicating whether or not variable vi is selected
in pattern pj, j ∈ {1, . . . , p}, then for all j we have

∏
1≤i≤n ci,j · |vi| ≤ M . (We

assume that at least one variable is selected in each pattern, i.e., for all j we
have

∑n
i=1 ci,j > 0). For generating disjoint pattern databases, we additionally

impose the condition that in each column there is exactly one 1, i.e., for all i
we have

∑p
j=1 ci,j = 1. Since the columns > 3 have more than one bit set, the

chromosome in Fig. 3 is not disjoint.7

6 Invalid chromosomes are assigned to a bad fitness value and discarded by Darwin’s
evolutionary rule for the survival of the fittest.

7 As planning operators can modify more than one state variable at a time, in differ-
ence to the set of well-studied (n2 − 1)-puzzle pattern databases [36] this condition
is only a necessary but not a sufficient condition for disjointness. As checking dis-
jointness based on the pattern selection may be involved, for each operator we assign
cost 1 to only one abstraction.
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Fig. 3. Bitvector representation of a chromosome

Initialization. For the initialization phase we could generate random chromo-
somes, but we found that the amount of work to find an acceptable partitioning
by performing a randomized assignment of the chromosomes is by far larger as
with prior bin packing with no significant advantage within the overall search
process. Therefore, we initialize the chromosomes with bin packing. To avoid
all chromosomes of the initial population to be identical, we choose a random
permutation to the atom groups prior to their automated partitioning into pat-
terns. This leads to comparably good but different distributions of groups into
patterns and a feasible initial population for the genetic algorithm.

Recombination. The motivation of recombination of two parent chromosomes
is the hope, that the good properties of the one parent combines well with the
good properties of the other. One of the simplest techniques that we looked at is
crossover : the parent chromosomes exchange parts of their patterns. If the two
parents have a different number of patterns, so do the two children.

Mutation. For mutation chromosome bits are flipped with a small probability.
This corresponds to extending or reducing the corresponding abstract space. For
our case, we had to allow the addition or deletion of entire patterns. In the bin
packing analogy of multiple pattern partition, adding a pattern corresponds to
opening a bin, and deleting a pattern corresponds to closing a bin.

Selection. During selection an enlarged population (as produced by either re-
combination or mutation) is truncated to its original size based on the fitness
value(s). The normalized fitness evaluation for the population is interpreted as
a distribution function, which governs the selection process for the next popula-
tion. Chromosomes with a better fitness are chosen with higher probability.

Objective Functions. The objective function plays a central role in a genetic
algorithm. It defines a fitness to determine the evolutionary strength of chromo-
somes. The construction of a meaningful objective function is often difficult, like
in our case, where the conditions for good patterns are hardly accessible.
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A fundamental question concerns the relationship between the contents of a
pattern database, and the number of nodes expanded when the heuristic is used
to guide the search. Korf [35] gives first insights in such performance predictions
of pattern databases: he characterizes the effectiveness of a heuristic h by its
expected value h (the mean) over the problem space. The main line of reasoning
is the following: if the heuristic value of every state was equal to its expected
value h, then a search to depth d would be equivalent to searching to depth
d − h without a heuristic, since the priority for every state would be its depth
plus h. This means that in most search spaces, a linear gain in h corresponds to
an exponential gain in the search.

For the pattern selection problem we conclude that the higher the average
heuristic value, the better the corresponding pattern database. As a consequence,
we compute the mean heuristic value for each database. For one pattern database
PDB we compute

h =
max∑

h=0

h · |{u ∈ PDB | h∗(u) = h}|
|PDB| ,

where h∗(u) is the accurate abstract goal distance stored for the abstract state
u, and where the size of a pattern database (layer) is determined by counting
the number of accepting paths in the BDD.8 For multiple pattern databases, we
have k distributions. As an example, the distributions of the heuristic estimates
for three pattern databases are shown in Fig. 4 in the form of histograms. For
computing the evolutionary strength for an entire chromosome we compute the
mean heuristic value for each of the databases individually and cumulate (or
maximize) the outcome. More formally, if PDBi is the i-th pattern database,
i ∈ {1, . . . , k}, then the additive fitness of a chromosome is computed as

fitness(c) =
k∑

i=1

maxi∑

hi=0

hi · |{u ∈ PDBi | h∗
i (u) = hi}|

|PDBi|
.

Using the mean heuristic estimate is not the only choice. We have also experi-
mented with a derivate not based on the number of states that share the same
heuristic value, but on the number of BDD nodes to represent them. Unfortu-
nately, the results were consistently weaker.

A Note on Search Tree Prediction. Applying the mean heuristic value for
the fitness extends to the formula for search tree prediction [37]. It approximates
E(N, c, P ), the expected number of nodes expanded by IDA* up to depth c, given
a problem-space tree with Ni nodes of cost i, and a heuristic characterized by
the equilibrium distribution P . The formula denotes that in the limit of large c,
we expect E(N, c, P ) =

∑c
i=0 NiP (c − i) nodes to be generated. It has already

been used for the analysis of pattern database performance [28] and to explain
anomalies that many small pattern databases are often more effective than few
8 There are linear time algorithms for performing model counting [3].
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Fig. 4. Histograms of heuristic values

big ones of same total size [29]. However, the growth of search trees for general
problems as addressed in action planning is not immediate [32]. Hence, we prefer
h for the fitness evaluation.

4 Experiments

For implementing genetic algorithms we adapt the library GAlib9 [50] to our
hybrid (explicit-state and symbolic) planner MIPS [9]. One advantage is that it
is portable to different operating systems. Another gain is that there is already a
2D chromosome data structure that satisfies our requirement. It was sufficient to
provide an objective function. A fitness function could be derived automatically,
using the fitness scaling approach. As a consequence, only the genetic operations
for recombination mutation and selection are to be configured. These configura-
tions have been implemented without modifying the existing source code for the
standard genetic algorithm.

After some initial testing10 we turned off recombination completely. This ac-
tually simplifies the genetic algorithm to a randomized local search strategy. As
indicated above, the mutation operator adds and deletes groups to an existing
pattern and allows to extend patterns in a disjoint partition. For the automated
construction of both explicit-state or symbolic pattern databases, the maximum
size of the abstract state spaces is taken as an additional parameter – actually
the only information that has to be provided manually.

4.1 Explicit-State Pattern Databases

In a first test suite, we studied explicit-state pattern databases constructed with
greedy bin packing and optimized genetic algorithms (with different parameters).
9 http://lancet.mit.edu/galib-2.4/

10 We conducted all experiments on a 3 GHz Linux PC. Time in CPU seconds was
limited to 1,800; space was limited to 1 GB.
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Fig. 5. Explicit pattern databases in Logistics

Fig. 6. Explicit pattern databases in DriverLog

The aim was to learn about the parameter setting of genetic algorithms in
planning domains, as they are known to be sensitive to parameter selection.

We use several runs applying the mean of the heuristic value as a comparison
guideline. As the iterated tests were involved, we depict the change in the explo-
ration efficiencies for some interesting domains only. The horizontal axes denote
the choice of parameters as follows.

Label Meaning
5 Bin Packing with a memory threshold of 25 abstract states
5,50,5 GA with a memory threshold of 25 abstract states, 50 epocs, 5 genes

In Fig. 5 the setup time, the search time (in seconds, left label) and the number
of expansions (right label) for different genetic parameters settings in the Logistics
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domain are shown. As we can see, even when including the entire construction
time for all pattern databases, with genetic algoirthms there is some substantial
gain compared to ordinary bin packing. As a general finding we observe that for a
better guidedance, longer construction time is needed. In some cases, however, the
construction time is so large that there is no gain in exploration. In the DriverLog
domain (Fig. 6) the influence is present, but less apparent.

Automatically selecting the parameters of the genetic algorithm in such a way
that the pre-computation efforts are acceptable with number of expansions that
is small enough remained a challenge. In the next set of experiments, we try to
scale-up the approach by using BDDs.

4.2 Symbolic Pattern Databases

For experimenting with symbolic pattern databases, we choose various prob-
lems from international planning competition (IPC-2, IPC-3, IPC-5).11 For the
construction of symbolic pattern databases we choose a population size of 5,
and a number of 20 epocs (resulting in at most 100 pattern databases to be
constructed and evaluated; some of them were eliminated due to size and state
variable constraints). The random seed was fixed for all experiments.

The initial population the genetic algorithm is computed as follows. We first
randomize the order of variables in the state vector. Next, we apply the bin-
packing strategy. 12 The search algorithm we applied is symbolic A* search with
full duplicate elimination. We have added the heuristic estimates.

In Table 1 symbolic exploration results for comparing greedy bin-packing
with genetic pattern selection in the benchmark problems are shown. Headings
read as follows: 2l is the abstract state space size limit; the searching time ts
is compared to the total running time 13 In other words, the setup time t − ts
for the genetic construction covers the time for computing all pattern databases
during the optimization process. The additional time for pattern optimization
contributes to the gain in the quality of the heuristic estimate, measured in h,
the mean heuristic estimate of the first (greedy bin-packing) or best surviving
(genetic algorithm) pattern.

As the Logistics and DriverLog domains were less complex in the explicit
than in the symbolic case, we have recognize that the application of symbolic
pattern databases pays off (cf. Fig. 1). We also observe that pattern optimiza-
tion generally leads to much better mean heuristic values and to smaller search
times. When scaling the problems the savings in search dominate the additional
workload during construction and take over to the total search time.

11 For domains from IPC-4 good exploration results of symbolic pattern databases are
already known [10].

12 As there is no unshuffled bin packing result, invoking search without optimization
can produce better results than with optimization.

13 Total time includes the parsing efforts of the planning problem and pattern database
construction. Time for grounding the domain is not counted as we apply an individual
but same program to both strategies.
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Table 1. Symbolic A* search with and without genetic optimized pattern databases

Greedy Bin Packing GA-Optimization

problem 2l length images h ts t length images h ts t

logistics-4-1 10 19 63 9.28 0.39 0.77 19 63 8.57 0.37 0.79
logistics-6-1 20 14 42 21.9 0.39 0.77 14 39 20.34 0.30 1.01
logistics-8-1 20 44 166 26.32 11.98 19.92 44 44 29.51 5.7 1.42
logistics-10-1 30 - - - - - 42 351 38.82 33.78 85.69
logistics-12-1 30 - - - - - 69 826 51.49 138.02 498.76

blocks-9-0 30 30 79 8.86 0.47 52.51 30 358 20.03 8.89 19.4
blocks-10-0 40 - - - - - 34 692 25.15 8.53 34.94
blocks-11-0 40 - - - - - 32 1,219 24.20 49.30 58.44
blocks-12-0 40 - - - - - 34 942 25.36 101.95 104.55

zeno-2 10 6 6 6.37 0.17 0.55 6 14 3.83 0.19 0.57
zeno-4 10 8 19 5.74 0.27 0.73 8 14 3.83 0.19 0.57
zeno-6 20 11 24 6.6 0.64 1.21 11 14 8.58 0.58 1.51
zeno-10 25 - - - - - 22 23 15.7 43.12 190.56
zeno-11 25 - - - - - 14 37 15.06 15.11 833.16

driverlog-9 25 22 109 12.9 86.76 87.59 22 107 15.3 52.46 72.25
driverlog-11 25 - - - - - 19 110 10.67 34.48 44.60
driverlog-13 35 - - - - - 26 143 13.7 553.01 778.03

openstack-1 20 23 96 3.71 0.51 1.29 23 116 5.06 0.60 3.04
openstack-3 20 23 96 3.71 0.51 1.29 23 110 5.40 0.60 3.02
openstack-6 30 20 65 4.99 70.38 96.17 20 39 5.44 52.42 216.19
openstack-7 30 - - - - - 20 38 6.88 31.05 484.19

pipesworld-2 20 12 91 6.53 0.77 2.82 12 82 7.01 0.23 4.72
pipesworld-4 20 11 34 4.75 4.37 6.44 11 50 6.63 1.55 4.62
pipesworld-6 20 10 23 5.44 3.31 5.44 10 29 7.33 0.95 4.82
pipesworld-8 20 11 25 6.12 55.08 60.07 11 29 7.57 6.79 12.58
pipesworld-10 53 - - - - - 19 203 10.97 45.30 97.27

5 Conclusion

We have seen a flexible attempt to optimize pattern database exploration prior
to the overall search process using genetic algorithms14. The approach optimizes
the partition of multi-variate variables into disjoint patterns. We showed that
pattern optimization is essential and optimization with genetic algorithms can
increase not only the search time, but also the total run time. While the greedy
bin packing strategy often runs out of memory, improved pattern selection with
genetic algorithm scales better and can find solutions where bin packing fails.

Given the time and space efficiency of symbolic search, we could construct
and evaluate many large pattern databases in a limited amount of time. Driven

14 To the author’s knowledge, optimization of patterns has not been considered before.
We are aware some (unpublished) work on the automated generation of pattern
databases by Holte and Hernádvölgyi. Their approach enumerates all possible (un-
subsumed) pattern partitions that are not subsumed by already considered ones.
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by the theory of search tree prediction, we have chosen the mean heuristic value
as a fitness function. For the evaluation of each chromosome we have computed
an entire set of pattern databases. Faster construction of larger databases favors
a symbolic construction, and the exploration gains obtained in the experiments
are promising. The encoding of pattern partition in a 2D gene allows experts to
reason on the structure of good patterns and to perform pattern fine-tuning.

Constructing the pattern databases for each fitness evaluation consumes a con-
siderable amount of time, especially if pattern databases become large. Future
work will address learning of the fitness functions in smaller instances for boot-
strapping in a genetic algorithm for larger instances. We also plan to consider
alternative optimization methods as the search efficiency varies a lot in different
runs. This suggests to apply randomized local search with random restarts [32].
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Abstract. We focus on checking safety properties in networks of extended timed
automata, with the well-known UPPAAL system. We show how to use predicate
abstraction, in the sense used in model checking, to generate search guidance, in
the sense used in Artificial Intelligence (AI). This contributes another family of
heuristic functions to the growing body of work on directed model checking. The
overall methodology follows the pattern database approach from AI: the abstract
state space is exhaustively built in a pre-process, and used as a lookup table during
search. While typically pattern databases use rather primitive abstractions ignor-
ing some of the relevant symbols, we use predicate abstraction, dividing the state
space into equivalence classes with respect to a list of logical expressions (pred-
icates). We empirically explore the behavior of the resulting family of heuristics,
in a meaningful set of benchmarks. In particular, while several challenges remain
open, we show that one can easily obtain heuristic functions that are competitive
with the state-of-the-art in directed model checking.

1 Introduction

When model checking safety properties, the ultimate goal is to prove the absence of
error states. This can be done by exploring the entire reachable state space. UPPAAL
is a tool doing this, for networks of extended timed automata.1 UPPAAL has a highly
optimized implementation, but still the reachable state space often is prohibitively large
in realistic applications. A potentially much easier task is to try to falsify the safety
property, by identifying an error path: for this, we can use a heuristic that determines in
what order the states are explored. If the heuristic is perfect, then only the states on a
shortest error path will have to be explored.

More formally, a heuristic, or heuristic function, is a function that maps states to
integers, estimating the state’s distance to the nearest error state. The heuristic is called

� Corresponding author.
1 Such (networks of) automata feature synchronization, integer variables, and real-valued clock

variables. We assume the reader is (vaguely) familiar with these concepts; a brief explanation
will be given. The ideas and results of the paper should be easily accessible without detailed
background knowledge.
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admissible if it provides a lower bound on the real error state distance. The search
gives a preference to states with lower h value. There are many different ways of doing
the latter. The A∗ method, where the search queue is a priority queue over start state
distance plus the value of h, guarantees to find an optimal (shortest possible) solution
(error) path if the heuristic is admissible. Herein, we instead use greedy best-first search.
There, the search queue is a priority queue over the value of h. This does not give any
guarantee on the solution length, but tends to be much faster than A∗ in practice.

The application of heuristic search to model checking was pioneered a few years ago
by Edelkamp et al [6,7], christening this research direction directed model checking,
and inspiring various other approaches of this sort, e.g. [5,9,13,15]. The main difference
between all the approaches is how they define and compute the heuristic function: How
does one estimate the distance to an error state?

A brief overview of the heuristic functions defined so far is this. Edelkamp et al [6]
base their heuristics on the “graph distance” within each automaton – the number of
edge traversals needed, disregarding synchronization and all state variables. This yields
a rather simplistic estimation, but can be computed very quickly. Groce and Visser
[9] define heuristics inspired from the area of testing, with the idea to prefer covering
yet unexplored branches in the program. Qian and Nymeyer [15] ignore some of the
state variables to define heuristics which are then used in a pattern database approach
(see below). Kupferschmid et al [13] adapt a heuristic method from the area of AI
Planning, based on a notion of “monotonicity” where it is assumed that a state variable
accumulates, rather than changes, its values. Dräger et al [5] iteratively “merge” a pair
of automata, i.e., compute their product and then merge locations until there are at most
N locations left, where N is an input parameter. The heuristic function is read off the
overall merged automaton.

We add another family of heuristic functions into the above arsenal, based on an
abstraction method already established quite broadly in model checking – predicate
abstraction [8]. A predicate abstraction of a system is defined by a set of logical ex-
pressions – the predicates. In general, one could use arbitrary expressions; herein, we
consider expressions of the form lfn(X) �� c where lfn(X) is a linear function in vari-
able set X , ��∈ {<,≤, =,≥, >}, and c is a constant (a number). The idea is to divide
the state space into equivalence classes with respect to the truth values of the predicates:
the abstraction of a system state s is a tuple b̄ of truth values, stating which of the pred-
icates are true or false in s; we have an abstract transition b̄ → b̄′ for every transition
s → s′ of the original system. The abstract system thus over-approximates the real sys-
tem, which enables us to analyze the abstract system in order to draw (certain kinds of)
conclusions about the real system. If an error state (condition) is not reachable in the
abstract system, then it is neither reachable in the real system. Such methods have been
extremely successful in the verification of temporal safety properties, e.g. [1,2,10].

Herein, predicate abstraction is, for the first time as far as we are aware, used to define
heuristic functions instead. In a manner reminiscent of the pattern database approach
[3], we build the (entire) abstract state space before search starts; during search, the
abstract state space is used as a lookup table, i.e., states are mapped onto their abstract
counterparts, and the error distance of the counterpart is taken as the heuristic estimate.
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In difference to our approach, pattern databases traditionally use simple abstractions,
mostly (like [15] above) based on ignoring some of the relevant symbols.

An important characteristic of our method (which it shares with traditional pattern
databases) is that it yields a very large family of heuristics, rather than just a single
one. Every different set of predicates yields a different abstract state space, which gives
a different heuristic function. The main question is: How should we choose the predi-
cates? This is the same “main” question as in the standard use of predicate abstraction.
However, in our approach the abstraction does not have to be precise enough to verify
the property of interest, in order to be useful. So we got much more freedom of design.
Herein, we explore two approaches. The first one simply collects the predicates from
the syntax (e.g. transition guards) of the automata network, which is not likely to be
property-preserving. The second one uses the standard error path guided abstraction
refinement life cycle: (1) start with an empty set of predicates; (2) find an error path;
(3) check if the error is real or spurious; (3a) if it is real, stop; (3b) if it is spurious,
analyze the error path to create new predicates that exclude this path, and goto (2). For
our purposes, we can stop the process at any time – we do not have to wait until a real
error path is found. In our experiments, we simply fix a number of refinement iterations
(which becomes an input parameter).2 Generating the predicates using abstraction re-
finement is, we think, particularly promising: this technique has the power to adapt the
heuristic function quite flexibly and intelligently to the individual problem instance at
hand. Surprisingly, we weren’t yet able to obtain entirely convincing results with the
technique; we believe there is hope for the future. This will be discussed in detail later.

Apart from the parameterization given by the choice of predicates, we explore an-
other parameter defining how the automata network is split into several parts. It turns
out that predicate abstraction is much too time-consuming when done on the entire net-
work. So we apply another abstraction method beforehand. We define a partitioning of
the set of automata (we “split” the network), and hand each part to the predicate ab-
straction engine in separate. The splits are made so that few potential “interactions” are
violated. The transition guards responsible for the violated interactions are removed.
During search, a heuristic value is looked up in each part (in the corresponding abstract
state space). These values are aggregated by taking their sum as the overall heuristic
value. Since we removed the guards responsible for violated interactions, this aggre-
gated heuristic value is still admissible. There are many possible strategies for making
the split. We use a simple greedy strategy parameterized by the split bound b – the max-
imal number of automata in a single part of the partitioning (the maximal number of
automata considered within a single predicate abstraction).

For testing, we use a set of benchmarks that is meaningful in that it includes exam-
ples from two industrial case studies [4,12]. Table 1 gives a summary of our results.
Examples “FAn” and “FBn” are variants of the Fischer protocol for mutual exclusion,
examples “Mi”, “Ni”, and “Ci” come from the industrial case studies (some more de-
tails are given later). In Table 1, “RDF” is standard UPPAAL’s fastest search strategy, a
randomized depth-first search. “[13]-best” gives, for each example, the better result of

2 We will see that, by using abstraction refinement for a heuristic – combining abstraction refine-
ment and state space search – we can solve examples that cannot be solved by either method
(abstraction refinement or blind state space search) alone.
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Table 1. Summary of results. Number of explored states/runtime (sec.) for RDF, [13]-best, and
[5]-b50. Overhead/number of explored states/runtime (sec.) for Syntax-b2 and ARMC-b3-r4.
Explanation see text.

Exp. RDF [13]-best [5]-N50 Syntax-b2 ARMC-b3-r4

FA5 526/0.0 27/0.0 80/0.1 0.0/80/0.1 0.3/29/0.3
FA10 6371/0.4 42/0.0 130/0.2 0.0/130/0.1 0.4/44/0.4
FA15 20010/1.3 57/0.0 180/0.5 0.1/180/0.1 0.6/59/0.6

FB5 356/0.0 74/0.0 21/0.0 0.1/21/0.1 0.5/23/0.5
FB10 7885/0.5 274/0.0 36/0.1 0.3/36/0.3 0.5/38/0.5
FB15 58793/3.8 599/0.1 51/0.4 0.5/51/0.5 0.5/53/0.5

M1 29607/0.7 5656/0.7 19063/0.9 1.1/23257/1.8 3.9/12121/4.1
M2 118341/3.3 30743/2.8 46545/1.5 1.2/84475/3.9 4.0/50599/5.1
M3 102883/4.6 18431/2.0 64522/2.0 1.1/92548/4.4 4.0/28022/4.4
M4 543238/6.1 88537/9.9 168692/3.3 1.3/311049/11.4 4.5/116570/5.8

N1 41218/2.0 16335/2.4 27275/2.0 1.0/36030/3.8 7.3/12439/8.1
N2 199631/10.1 132711/9.9 102097/5.2 1.4/178333/14.0 7.8/97219/11.3
N3 195886/9.7 28889/3.3 135783/6.8 1.3/196535/15.4 7.5/43159/9.6
N4 878706/43.5 226698/23.1 483623/23.1 1.2/983344/75.1 8.2/469363/24.4

C1 25219/0.9 2368/0.8 871/0.5 2.8/1588/2.8 10.8/1172/10.8
C2 65388/1.0 5195/1.5 1600/0.6 3.0/3786/3.1 12.2/3256/12.2
C3 85940/1.7 6685/1.7 2481/0.8 2.6/3846/2.7 12.5/4278/12.5
C4 892327/9.7 55480/6.5 22223/1.4 4.6/30741/5.0 14.3/46837/14.8
C5 8.0e+6/81.9 465796/41.9 160951/3.2 5.0/185730/8.0 15.4/473470/20.0
C6 – 4.5e+6/353.0 1.7e+6/15.5 5.2/1.9e+6/33.9 16.5/2.6e+6/42.5

the two heuristic functions defined in [13]. “[5]-N50” gives the result for the heuristic
from [5] with N = 50.3 “Syntax-b2” is predicate abstraction based on automata syntax,
with split bound 2. “ARMC-b3-r4” is predicate abstraction based on abstraction refine-
ment, with split bound 3 and 4 refinement iterations. The implementation interfaces
to ARMC [14,16], which does the abstraction refinement. The “overhead” given for
“Syntax-b2” and “ARMC-b3-r4” is the total time taken to build abstract state spaces.

“Syntax-b2” and “ARMC-b3-r4” are, overall, the most successful configurations, of
the many possible configurations of our code, that we found in our experiments. The
experiments, in particular the effects of the different parameters on performance, are
described in detail later (Sections 4 and 5). From a quick glance at Table 1, one sees
that our new heuristics are indeed competitive with the heuristics defined by [13] and
[5] (which, in turn, have been shown to outperform [6] and some other simple heuristics
in these examples). “[13]-best” explores very few states in the “Mi” and “Ni” examples,
“[5]-N50” and “Syntax-b2” are best in the “Ci” examples. Note that the blind search
“RDF” cannot solve C6 (consumes more than 1GB memory). It is also notable that
“[13]-best” takes more time to compute than the other heuristics – e.g., this can be seen
in C5 where “[13]-best” takes 41.9 seconds to explore 465796 states, but “ARMC-b3-
r4” takes only 4.6 seconds (20.0-15.4) to explore a slightly larger number of states.4

3 This is the sweet-spot; when increasing N , the number of explored states does not decrease
much, but the overhead for merging the automata increases a lot.

4 “[13]-best” is the only one of the tested heuristics that is not organized as a lookup table (the
abstract problem has to be solved in every search state). Note that the results reported in [13]
are better than those in Table 1; this is due to the additional “bitstate hashing” technique used
there. Here, we focus exclusively on the heuristic functions.
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The main surprise in the data, for us, was the good performance of syntax-based
predicate abstractions, like “Syntax-b2”: we didn’t expect that one can do so good with
such a simple form of abstraction predicates. In particular, we expected abstraction
refinement to yield much better heuristics. The reason why this is not (yet) the case
appears to lie in the following oddity. One would expect that a more refined heuristic
yields a smaller search space.5 However, in disquietingly many cases, refining the ab-
straction yielded a larger search space in our experiments. We believe there is hope to
overcome this with modified refinement strategies; see Section 5.

The paper is organized as follows. The next section provides a brief background of,
and some notations for, predicate abstraction. Section 3 summarizes the technical details
of our approach: the formal definition of the predicate abstraction heuristic, a method
to implement the needed “lookup tables” efficiently, and the technicalities of our net-
work split operation. Section 4 gives detailed empirical observations for syntax-based
predicate abstractions, Section 5 gives detailed empirical observations for predicate ab-
stractions based on abstraction refinement. Section 6 concludes.

2 Predicate Abstraction

In principle, the idea behind this sort of abstraction is very simple. Say we have a
transition system, specified declaratively via a set of transition rules, and a set X of
variables. The state space of the system is the directed graph S where the nodes are all
states (variable valuations) s, and the edges are the possible state transitions, as induced
by the transition rules; we will use S also to denote the set of states. A predicate ab-
straction is defined by a finite set P of predicates over X . In our context, as said earlier,
each p ∈ P has the form lfn(X) �� c. Denote by a bitvector for P any conjunction
that contains (exactly) each p ∈ P , possibly negated. For a bitvector b̄, denote by [b̄]
the extension of b̄, [b̄] := {s | s ∈ S, s |= b̄}. The [b̄] are equivalence classes in S;
for s ∈ [b̄], we denote [s] := [b̄]. The abstract state space for P , denoted [S]P , is the
directed graph where the nodes are all bitvectors for P , and there is an edge from b̄1 to
b̄2 iff there exist s1 ∈ [b̄1] and s2 ∈ [b̄2] so that there is an edge from s1 to s2 in S.
Obviously, [S]P is an over-approximation of S: if s2 is reachable from s1 in S, then
[s2] is reachable from [s1] in [S]P .

Matters get a little more complicated once one starts to think about how to actu-
ally handle this sort of abstraction. When building the abstract state space, one has to
frequently decide if there is an edge from a bitvector b̄1 to a bitvector b̄2. Enumerat-
ing [b̄1] and [b̄2] is, of course, nonsense. Instead, one formulates the transition rules of
the real system as (conjunctions of) constraints on variable values (before and after the
transition), so that the needed test comes down to the satisfiability of a conjunction of
constraints. Both our own implementation and ARMC use this method, regressing from
the error condition in a breadth-first manner to build the fraction of the abstract state
space that is reachable from that condition. Concretely, both methods repeatedly con-
sider a formula φ that formulates the properties of the state(s) that should be inserted
next into the state space: φ is initially the error condition, and later the conjunction

5 It is easy to see that a more refined heuristic dominates a less refined heuristic; see Section 3.
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of the constraints given by the regressed abstract state, and the transition. The precise
method to find the corresponding abstract states would be to enumerate all bitvectors
and check if they are satisfiable in conjunction with φ. Instead, both our own implemen-
tation and ARMC additionally use a “cartesian” abstraction, and set the resulting state
to

∧
{p | p ∈ P , φ |= p} ∧

∧
{¬p | p ∈ P , φ |= ¬p}. That is, one just checks which

“bits” are definitely implied, and leaves the others unspecified. We denote such partial
bitvectors with c̄, keeping the notation [c̄] := {s | s ∈ S, s |= c̄}. By [cS]P we denote
the abstract state space – the graph of partial bitvectors – built in this way.

3 Technicalities

Before we start explaining the technical details of our approach, we fill in some details
on the framework. As said, we consider networks of extended timed automata, which
are finite automata (whose “states” are called “locations” in here) annotated with: 1.
Effects and guards (constraints on edge executability) on integer variables; 2. Effects
and guards on real-valued clock variables. The latter are a restricted form of real-valued
variables: they always increase with the same speed as a linear function over time; their
only allowed guards take the form x �� c or x − y �� c; their only allowed effects take
the form x := c (where c denotes a constant). Networks of extended timed automata
feature a set of such automata, that can share global integer and clock variables, and that
can synchronize via synchronization actions. The latter actions generally take the form
“send signal a” or “receive signal b”. If (and only if) “a” and “b” match, the two edges
can (and must) be taken simultaneously, as a single transition of the system. Arbitrarily
many edges may be involved in such a transition if, e.g., the “send” action is a broadcast.
In our implementation, so far we allow binary synchronization only, involving exactly
two automata (one sender, one receiver).

Our safety properties take the form of formulas φ. In our implementation, so far
we restrict to reachability, i.e., the question of whether a state fulfilling φ is reachable,
where φ specifies a set of target locations and/or conditions on the clocks and integer
variables.

UPPAAL tests safety properties in networks of extended timed automata by enumer-
ating the space of reachable states. The search states correspond not to single system
states, but to sets of such states. Namely, instead of concrete clock valuations, of which
there are infinitely many, UPPAAL considers clock regions, whose (relevant) number
is finite. A clock region is given in the form of a (normalized) set of unary or binary
constraints on the clock values, called difference bound matrix.

3.1 Predicate Abstraction Heuristics

To turn a predicate abstraction into a heuristic function, we simply map the state into
the abstract state space, and read the error distance from there. Precisely, if φ is the error
condition, P is the predicate set, and s is a system state, we get:

hP(s) := min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , s ∈ [c̄1], ∃s′ ∈ [c̄2] : s′ |= φ}.
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Here, distP(., .) is graph distance in [cS]P , which is∞ if there is no path from the first
to the second argument. Note here that, since the bitvectors c̄ in [cS]P are partial, there
may be several c̄1 so that s ∈ [c̄1]. hP(s) = ∞ if no error state is reachable in [cS]P

from any such c̄1, which implies that no error state is reachable in S from s. Since we
minimize over all c̄1 (and c̄2), hP is admissible:

Proposition 1. For any non-temporal formula φ, predicate set P , and s ∈ S, we have
hP(s) ≤ min{dist(s, s′) | s′ ∈ S, s′ |= φ}, where dist(., .) is graph distance in S.

Another interesting property of this kind of heuristics is that they are monotone in the
predicate set, in the following sense:

Proposition 2. For any non-temporal formula φ, predicate sets P1 and P2 such that
P1 ⊆ P2, and s ∈ S, we have hP1(s) ≤ hP2(s).

This is simply because, in particular, [S]P2 makes all distinctions that [S]P1 makes.
What it tells us is that, if we refine a predicate set P by inserting new predicates into
it, we obtain a heuristic function that dominates the previous one, in that it provides a
(potentially) better lower bound.

For use in UPPAAL, we have to modify the definition of hP to work on UPPAAL
search states – which correspond to sets of system states. Let s be a UPPAAL search
state, and [s] be the corresponding set of system states. We define:

hP(s) := min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , [s] ∩ [c̄1] �= ∅, ∃s′ ∈ [c̄2] : s′ |= φ}.

Obviously, again this leads to an admissible heuristic function, and the monotonicity in
the predicate set is preserved. While the definition looks fairly complicated, we will see
in the next section that, once the abstract state space [cS]P is built, the function can be
implemented quite efficiently.

3.2 Predicate Abstraction Pattern Databases

For every search state UPPAAL encounters, the heuristic function must be computed.
This makes it time-critical to implement that function efficiently. Our two main tricks
are: 1. We formulate the mapping of search states into [cS]P as a “bitset” inclusion
problem; 2. We use a tree data structure to address that inclusion problem efficiently.

Remember that the abstract states in [cS]P are partial bitvectors c̄: sets of possibly
negated predicates from P – sets of bits. Given a UPPAAL search state s, by φ(s) we
denote the constraint conjunction corresponding to s: location and integer valuations
plus difference bound matrix. We define the following bitset:

c̄(s) := {p | φ(s) |= p} ∪ {¬p | φ(s) |= ¬p} ∪ {p,¬p | φ(s) �|= p, φ(s) �|= ¬p}.

In words, c̄(s) contains all bits that may possibly be true in s (that are satisfied by at
least one system state in [s]). While the definition of c̄(s) involves entailment checks,
due to our particular circumstances c̄(s) can be computed efficiently. First, the UPPAAL
search state contains precise valuations for all locations and integer variables; the uncer-
tainty is exclusively about the clocks. So predicates not involving clocks can simply be
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evaluated in s. Second, since UPPAAL itself allows only clock constraints of the form
x �� c or x − y �� c, it is reasonable to also restrict to such constraints in the predicate
sets. Whether such a predicate is implied by s or not can be read off from a single pass
over the difference bound matrix of s. We observe:

[s] ∩ [c̄1] �= ∅ ⇔ c̄(s) ⊇ c̄1.

This is because [s] ∩ [c̄1] �= ∅ iff c̄1 contains no bit that is known to be false in s – in
other words, if all bits contained in c̄1 may be true in s. We obtain:

hP(s) = min{distP(c̄1, c̄2) | c̄1, c̄2 ∈ [cS]P , c̄(s) ⊇ c̄1, ∃s′ ∈ [c̄2] : s′ |= φ}.

This is a syntactic characterization except for ∃s′ ∈ [c̄2] : s′ |= φ; but that we have
dealt with already when building [cS]P : we simply mark, during that pre-process, the
respective c̄2 (namely, the start state in our backward search) as error states. Of course,
we also annotate each state c̄ with its distance to the nearest error state (building [cS]P

backward breadth-first, we get that distance for free).
We are left with the problems to: 1. In the pre-process, store [cS]P as a set of bitsets

annotated with their error distance; 2. During search, quickly find all bitsets that are
contained in c̄(s). Both can be accomplished using a data structure called Unlimited
Branching Tree [11]. In a nutshell, this is a tree structure that stores sets of sets, ex-
ploiting shared elements between the sets to optimize space usage and access time for
answering subset queries of the precise kind we need here. The details are not essential
for the paper at hand, so we omit them. (A node in the tree may have as many branches
as there are distinct elements in the sets, hence the name.)

3.3 Network Splitting

A very simple abstraction method is to partition the set of automata contained in a net-
work. As said, we use this abstraction prior to predicate abstraction, in order to make
the latter feasible. One simply considers each part of the partitioning – a subset of the
automata – in separate. The only problem with this approach is that, of course, the
automata typically interact with each other in various ways, and cannot be split with-
out violating such interactions. We identify a possible definition of what “interaction”
means. We approximate that definition to obtain an admissible splitting strategy.

Let e be an edge of automaton a, and e′ be an edge of automaton a′ �= a. Let ψ be an
effect of e (an assignment to a variable, or a synchronization action), and let φ be a guard
of e′ (a constraint over variables, or a synchronization action). We say that ψ affects φ
if there is an execution trace P (a path in S) so that: e occurs before e′ on P ; when
removing ψ from e and simulating the execution of P by ignoring the guards between e
and e′, φ is no longer satisfied at the point where e′ should be executed. Similarly, this
definition is made also for location invariants φ. We say that an automaton a affects an
automaton a′ if there is an effect of an edge in a that affects a guard of an edge, or a
location invariant, in a′. We say that a and a′ interact if a affects a′, or vice versa.

Proposition 3. Say we have a network with automata A, a set of target locations φ,
and a set A1 ⊆ A such that no automaton in A\A1 affects any automaton in A1. Then,
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for any s ∈ S, we have min{dist|1(s|1, s′) | s′ ∈ S|1, s′ |= φ|1} ≤ min{dist(s, s′) |
s′ ∈ S, s′ |= φ}, where s|1 is s restricted to the locations and variables mentioned in
A1, S|1 is the state space of A1, φ|1 is the subset of φ mentioned in A1, and dist(., .)
(dist|1(., .)) is graph distance in S (S|1).

In words, the isolated automata A1 provide an admissible distance estimate. The reason
for this is, simply, that we can take any solution path for A, and restrict it onto the edges
present in A1, to obtain a solution for A1 in isolation – otherwise, if that restricted
path wasn’t a solution for A1, a constraint in A1 would be unsatisfied, and we could
construct a contradiction since an edge on the sub-path for A \A1 would have to affect
that constraint. Note that, in particular, Proposition 3 says that, if A is solvable, then A1

in isolation is also solvable. We further have:

Proposition 4. Say we have a network with automata A, a set of target locations φ,
and a partioning A1, . . . , Am of A so that no pair of automata a ∈ Ai, a′ ∈ Aj , i �= j,
interacts. Then, for any s ∈ S, we have

∑m
i=1 min{dist|i(s|i, s′) | s′ ∈ S|i, s′ |=

φ|i} ≤ min{dist(s, s′) | s′ ∈ S, s′ |= φ}, where the notations are as in Proposition 3.

This tells us that we can safely add the individual heuristic values. The reason is that
we can partition any solution path for A into (independent) solution paths for each of
A1, . . . , Am.

What we have just seen is not yet practical since there normally is no split that
doesn’t violate any interaction (otherwise there would be no point in posing both parts
of the network within the same problem). We become practical by finding potential
interactions, and simply removing guards that constitute violated potential interactions.
Concretely, we use the simplistic notion saying that effect ψ can not affect condition φ
if the variable x affected by ψ, and any variable that can, transitively, be affected by the
value of x, does not appear in φ. For example, x := 1 can affect x + y > 2. On the
other hand, x := 1 can affect y > 2 if there also is an effect y := x somewhere, but
not if there is no chain of variables from x to y. In our pre-process, we simply consider
all pairs of occuring ψ and φ, and see if they satisfy this criterion; if not, we say that
they have a potential interaction. We then greedily put automata together (into one part
of the partitioning) so that few potential interactions to automata in other parts remain.
For those interactions that do remain, we remove the responsible φ. Note that the latter
will, in particular, remove synchronization actions that also occur in other parts.

With Proposition 4, our resulting heuristic function is still admissible, except for the
effects of synchronization. In a solution path to A, a set of synchronized edges will
be counted as a single transition, while in the partitioned network every edge will be
counted separately.6 We feel that this potential non-admissibility is benign. For exam-
ple, if only binary synchronization is allowed, then the real error state distance is over-
estimated by at most a factor 2 – in the worst case, which one can realistically expect
to be far away from the typical case. We ran a number of tests using our heuristics with
A∗, and never obtained a sub-optimal solution.

6 Note that the automata network “A” we have here, in the application of Proposition 4, is no
longer the original network, but one where several synchronization actions have been removed.
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Table 2. Results for syntax-based abstractions. Notation as in Table 1; empty entries are identical
to their left neighbour; “–/” means time-out during pre-processing.

Exp. Syntax-b1 Syntax-b2 Syntax-b3 Syntax-b4 Syntax-all

FA5 0.1/80/0.1 0.0/80/0.1 0.3/80/0.3 0.2/80/0.2 1.5/27/1.5
FA10 0.1/130/0.1 0.2/130/0.2 0.4/130/0.4 0.6/130/0.6 7.4/42/7.4
FA15 0.1/180/0.1 0.3/180/0.3 0.7/180/0.7 1.2/180/1.2 28.8/57/28.8

FB5 0.1/21/0.1 0.1/21/0.1 0.2/21/0.2 0.3/21/0.3 0.7/21/0.7
FB10 0.1/36/0.1 0.3/36/0.3 0.4/36/0.4 0.5/36/0.5 2.1/36/2.1
FB15 0.1/51/0.1 0.5/51/0.5 0.8/51/0.8 0.9/51/0.9 3.4/51/3.4

M1 0.3/16446/0.8 1.1/23257/1.8 6.3/12780/6.8 6.6/12780/7.0
M2 0.3/68956/3.5 1.2/84475/3.9 9.6/37780/10.3 37.1/34947/37.8
M3 0.3/62731/2.6 1.1/92548/4.4 9.1/55726/11.5 36.5/55098/37.8
M4 0.4/275433/7.0 1.3/311049/11.4 13.5/198407/20.5 57.3/139875/62.6 –/

N1 0.5/22304/2.7 1.0/36030/3.8 8.8/17357/9.9 8.5/17357/10.2
N2 0.5/122398/8.1 1.4/178333/14.0 11.7/87471/19.8 47.8/63596/53.3
N3 0.5/140201/8.7 1.3/196535/15.4 11.2/115074/21.7 46.8/96202/56.7
N4 0.6/738680/37.9 1.2/983344/75.1 16.3/720350/78.8 70.1/445359/120.3 –/

C1 0.9/1455/1.1 2.8/1588/2.8 9.5/4698/9.6 –/ –/
C2 1.4/3273/1.4 3.0/3786/3.1 9.5/10843/9.6 35.7/10507/35.9 –/
C3 1.4/5879/1.5 2.6/3846/2.7 9.7/10375/9.8 35.7/10195/35.9 –/
C4 1.6/44837/2.3 4.6/30741/5.0 21.2/66336/22.7 104.3/66761/105.7 –/
C5 1.8/301065/6.4 5.0/185730/8.0 21.7/436678/34.0 109.4/435309/121.5 –/
C6 1.6/2.8e+6/39.8 5.2/1.9e+6/33.9 26.7/4.1e+6/137.2 103.2/3.8e+6/230.0 –/

4 Syntax-Based Abstractions

In our syntax-based abstractions, as indicated before, the abstraction predicates are sim-
ply read off the description of the automata network. Given a set A of automata, the cre-
ated set of predicates consists of all expressions e that appear as a transition guard, or
as a location invariant, of some automaton in A. Further, the abstraction distinguishes
between the locations (which is equivalent to including the predicate loc(a) = l for
each a ∈ A and location l of a).

Simply collecting all mentioned constraints, there is no parameterization to this sort
of abstraction – except the need to split the automata network before the abstraction is
applied. Table 2 shows our results. The data, and all other data reported herein, were
obtained on a PC running at 1.2GHz with 1GB main memory and 1024KB cache run-
ning Linux. We set a time-out of 300 seconds for pre-processing. Search always ran out
of memory before we ran out of patience (within a few minutes, that is).

Before considering the data, let us describe the examples in some more detail. Recall
that our aim is falsification of safety properties, i.e., the systems we consider are unsafe
in that an error state is reachable. Since the examples we considered were originally
safe, we injected an error into them.

Examples “FAn” and “FBn” are variants of the Fischer protocol for mutual exclu-
sion, which asks if at least two of n similar automata can be in a certain location si-
multaneously. We made the error possible by weakening one of the temporal conditions
in the automata (from “>” to “≥”). The variants differ in the way they encode the
error condition. Variant A adds additional automata with synchronisation. Variant B
selects and specifies two of the automata for the error condition. Examples “Mi” and
“Ni”, i = 1, . . . , 4, come from a study called “Mutual Exclusion”. This study models a
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real-time protocol to ensure mutual exclusion of states in a distributed system via asyn-
chronous communication. The protocol is described in full detail in [4]. By increasing
an upper time bound in the model we got a flawed specification that we transformed
into its timed automata semantics by applying various abstractions techniques. Exam-
ples “Ci”, i = 1, . . . , 6, come from a case study called “Single-tracked Line Segment”.
This study stems from an industrial project partner of the UniForM-project [12] and
the problem is to design a distributed real-time controller for a segment of tracks where
trams share a piece of track. A distributed controller was modeled in terms of PLC-
Automata [4,12], and translated into timed automata. We injected an error by manip-
ulating a delay such that the asynchronous communication between some automata is
faulty. The given set of PLC-Automata had eight input variables and we constructed six
models with decreasing size by abstracting more and more of these inputs.

In Table 2, the split bound increases from left to right as obvious; in “Syntax-all”
there is no split bound, meaning that the entire network is handed to the abstraction
engine in one piece. The foremost observation is that the latter is bad – except in the
Fischer toy examples and the smaller “M” and “N” cases, the abstract state space could
never be built within the alloted time (300 sec). (“M1” .. “M3” and “N1” .. “N3” have
≤ 4 automata so there is no change from “Syntax-b4” to “Syntax-all”.) Consider the
“M” and “N” examples, and what happens as b increases from 1 to 4. The overhead
increases sharply, quickly becoming larger than the time spent in search. Strangely, the
number of explored states also grows, from b = 1 to b = 2, before decreasing again
from b = 2 to b = 4. It is unclear to us what causes this behavior. The smallest search
spaces are obtained with b = 4, the smallest overall runtimes are obtained with b = 1.
Note that the “M” and “N” examples can all be solved quite quickly even with a blind
search, c.f. Table 1. The “C” examples are more interesting in that respect (blind search
scales badly). They exhibit very similar behavior in terms of the overhead.7 The number
of explored states now decreases sharply from b = 1 to b = 2, and increases sharply
from b = 2 to b = 3. Again, the reason for this behavior is unclear. C6 is the first
example (in the scaling pattern here) where the larger overhead pays off in runtime –
“Syntax-b2” is faster than “Syntax-b1” due to the reduced search space. Note here that
C6 is the most relevant example.

All in all, the syntax-based abstractions give surprisingly good performance – e.g.
“Syntax-b2” is very competitive in the “C” examples – but they don’t seem to have
much potential for further improvements. One could try to allow more freedom in
the selection of the predicates, but such an approach is likely to be wild guesswork,
at least without a deeper analysis of the system. An idea worth trying is to integrate
syntax-based predicate selection into abstraction refinement: as a start, one could select
(amongst others) the guards that are not satisfied by the spurious error path.

5 Abstraction Refinement

We implemented this sort of abstraction via an interface to the ARMC tool [14,16].
This is a recent model checker based on error path guided abstraction refinement.

7 C1 is exceptionally hard for the pre-process since there are only 4 automata, which have a
large abstract state space together; in C2 . . . C6, one of these automata is split away.
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Predicates are generated from spurious error paths by an analysis using a constraint
based interpolation [17] to find a concise reason for the failure (the spuriousness) of
the path. We modified ARMC to feature a maximal number of iterations as an input
parameter. If ARMC finds a correct abstraction (no error paths), it stops with no output,
causing our overall program to terminate – if there is no abstract error path, then there
is no real one. (In our examples, of course this did not happen.) If ARMC finds a fea-
sible (real) error path, it stops and outputs the abstract state space.8 The same happens
otherwise, i.e. if the maximum iteration is reached. The abstract state space is read in,
and stored in a UBTree structure for lookup.

The configuration of our heuristic function now has two parameters: the split bound,
and the number of refinement iterations. This makes our data field 3-dimensional.
Table 3 restricts to the “C” examples – which are the most relevant anyway – to save
space. The data are arranged in a slightly unusual way, grouped by example rather
than by configuration parameters, to ease observing how the behavior for an example
changes as a function of the configuration parameters.

Let us start with some of the simpler observations to be made in Table 3. First,
we see that, like for the syntax-based abstractions, without network splitting we don’t
get far. The overhead needed with “-b all” is huge with 0 or 1 refinement iterations
(“-r 0” or “-r 1”) already, exhausting the available runtime for C6 respectively C5.9

With 4 or more refinement iterations, runtime is exhausted in even the smallest exam-
ple C1. Second, for “-b 1” and “-b 2”, the table entry with “-r 7” is always identical to
that with “-r 4”. This is because ARMC finds feasible error paths. Precisely, with “-b
1” ARMC finds feasible error paths, in all examples and in all parts of the partitionings
(meaning, in each single automaton), in 4 refinement iterations. So increasing the max-
imum number of refinement iterations beyond 4 does not have any effect. With b = 2,
ARMC finds feasible error paths in 3 refinement iterations already.

Now, consider what happens as we let the configuration parameters vary. Consider
first the split bound “-b”: compare the data when moving up or down in the table.
Like for the syntax-based abstractions in Table 2, the overhead consistently grows over
growing split bound, particularly much when the number of refinement iterations is
high.10 The number of explored search states, on the other hand, behaves more stably,
and a little more expectedly, than for the syntax-based abstractions in Table 2. In most
cases, the number stays the same, or decreases, over increasing split bound. Particularly
with many refinement iterations, there is a relatively sharp monotonic decrease over
increasing split bound. Notable exceptions to this rule are a few configurations for C1,
and the increase from 2.6e+6 states to 3.8e+6 states when moving from “-b 3” to “-b 4”
in C6. We observe that the decreased search space size never pays off in runtime: when
moving downwards in a column within one part of the table (within one example), the
runtime (almost) always increases monotonically.

8 Since ARMC gets only parts of the network, i.e. due to our splitting operation, a feasible error
path here is not a solution to the overall problem.

9 The observations for C6 here show that combining ARMC and UPPAAL enables us to solve
examples that neither tool can solve on its own. ARMC, if it can solve C6, would definitely
run for a very long time. UPPAAL, as said before, runs out of memory on this example.

10 Regarding the huge overhead for C1 with split bound 4, see Footnote 7.
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Table 3. Results for abstraction refinement based abstractions. Notation as in Table 1; “-r”: num-
ber of refinement iterations in ARMC; “-b”: split bound; empty entries are identical to their left
neighbour; “–/” means time-out during pre-processing; “/–” means out of memory during search.

-b \ -r 0 1 4 7

C1
1 0.8/19778/1.0 0.8/17330/1.0 1.6/2806/1.6
2 1.9/8769/2.0 2.6/8861/3.1 6.0/1508/6.0
3 1.7/8769/1.8 3.0/8861/3.1 10.8/1172/10.8 36.2/6362/36.2
4 10.0/16291/10.3 32.9/12044/33.0 176.0/3630/174.3 –/
all 30.2/8769/30.2 120.2/9627/120.2 –/ –/

C2
1 1.0/62046/1.4 1.2/59031/1.7 1.5/8143/1.6
2 1.7/39710/2.0 3.1/35245/3.4 6.3/4898/6.3
3 1.7/39710/2.0 4.1/35245/4.4 12.2/3256/12.2 38.2/25601/38.4
4 2.1/39710/2.6 5.2/35245/5.5 17.2/3256/17.2 63.8/25601/63.9
all 43.0/39710/43.1 189.1/40122/189.8 –/ –/

C3
1 0.9/88015/1.6 0.9/89194/1.6 1.6/10191/1.7
2 1.6/67166/2.2 3.1/53616/3.4 6.4/5583/6.4
3 1.6/67166/2.2 3.8/53616/4.2 12.5/4278/12.6 40.2/30407/40.4
4 2.0/67166/2.5 5.2/53616/5.6 18.0/4278/18.0 67.6/30407/67.8
all 44.6/67166/45.0 198.2/52042/198.9 –/ –/

C4
1 1.2/897900/6.8 1.5/872580/7.2 2.0/79069/2.7
2 2.1/516282/5.8 3.0/511180/6.8 6.8/41831/7.1
3 2.1/516282/5.8 4.8/511180/8.6 14.3/46837/14.8 45.6/279374/47.4
4 2.1/516282/5.8 6.0/511180/9.9 20.6/46837/21.0 73.3/279374/74.9
all 67.6/516282/71.2 288.9/540013/291.7 –/ –/

C5
1 1.1/9.0e+6/64.1 1.3/8.4e+6/61.0 2.4/1.1e+6/11.8
2 2.2/4.9e+6/38.8 3.2/6.8e+6/57.0 7.6/425264/11.6
3 2.2/4.9e+6/38.8 5.2/6.8e+6/59.1 15.4/473470/20.0 48.7/2.3e+6/66.2
4 2.2/4.9e+6/38.8 7.0/6.8e+6/62.2 24.1/288614/26.7 79.9/1.9e+6/94.3
all 94.1/4.9e+6/132.2 –/ –/ –/

C6
1 /– /– 2.4/4.4e+6/40.5
2 /– /– 7.9/2.8e+6/34.1
3 /– /– 16.5/2.6e+6/42.5 /–
4 /– /– 30.5/3.8e+6/63.4 /–
all /– –/ –/ –/

In terms of runtime, the number of refinement iterations definitely is a better param-
eter to invest overhead in: most notably, C6 is not solved with less than 4 refinement
iterations. Then again, refining “too much” apparently isn’t a good idea, either. We get
back to this below. First, observe that, when moving from left to right in the table (when
increasing the number of refinement iterations), as expected we get a consistent increase
of overhead. The number of explored search states consistently (with few exceptions)
decreases a little when stepping from “-r 0” to “-r 1”, decreases sharply when stepping
from “-r 1” to “-r 4”, and increases sharply when stepping from “-r 4” to “-r 7”. In
terms of runtime, the decrease in search space size does not pay off (due to the larger
overhead) in C1 .. C4, but does pay off in C5 and C6, when the search spaces explode.

The most curious observation in this data is definitely the increase in search space
size that we often get when we make the abstraction more refined. Particularly, this is a
surprise since, c.f. Section 3.1, every time we refine the abstraction we obtain a heuristic
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that dominates the previous one. At first sight, we were irritated this is even possible –
a heuristic that dominates another one, but yields a larger search space. Looking more
closely, however, this is possible quite naturally. Imagine a state has two successors s
and s′, of which s leads to an error state on a narrow path (not much branching) of
length 10, while s′ is the start of a huge part of the state space containing no error state
at all. Let’s say h(s) = 5 and h(s′) = 8. Let’s further say h′(s) = 9 and h′(s′) = 8.
Obviously, h′ is a more precise heuristic than h – it refined h in its judgement of s – but
will yield a much larger search space. The “mistake” made in the refinement step here is
that the focus of the refinement is exclusively on s, not on s′. This sort of thing may be
precisely what happens (sometimes) when we do a refinement step with ARMC. In fact,
the defining characteristic of the refinement step is that it excludes the detected spurious
error path – which means, one shortest spurious error path (ARMC does a breadth-first
search) is removed. But other spurious error paths of the same length may remain. The
heuristic values “along” the removed spurious error path will increase (that region of
the state space is refined), but the heuristic values “along” the other spurious error paths
will remain the same. If the removed spurious error path happens to be the (only) one
that actually corresponds to a real solution, then the refinement will increase our search
space in pretty much the way as illustrated with s and s′ in the example above.

Our intuition was confirmed quite clearly when we ran the following test on example
C4 with split bound 3 (middle row of C4 part of Table 3). We incrementally increased
the number of refinement iterations, and measured the search space size as well as the
length of the shortest error path found in the abstractions at the maximum level. The
partitioning for this example in this setting has two parts, giving us two abstractions.
The data we obtained are as follows. “-r 0”: 516282 nodes, error path lengths 6 and 5.
“-r 1”: 511180, lengths 9 and 7. “-r 2”: 49384, lengths 13 and 10. “-r 3”: 56081, lengths
13 and 12. At this point, we first notice the hypothesized effect. In difference to before,
the error path length of the first abstraction didn’t increase, and promptly the search
space size went (slightly) up. The error path in the second abstraction became feasible
at this level, so it stays fixed and we don’t report it from now on. “-r 4”: 46837, length
13. “-r 5”: 63606, length 13. “-r 6”: 279374, length 13 – this step seems to correspond
most closely to the example above. “-r 7”: 279374, length 13. “-r 8”: 279374, length 13.
“-r 9”: 361555, length 13. “-r 10”: 50060, length 16. In this step, the error path length
finally increases again, and promptly the search space size goes sharply down. The error
path found in refinement step 10 is feasible, so here our experiment stops.

One can try to overcome this phenomenon by making the refinement mechanism
less focussed on a single error path, trying to exclude the spurious error paths more
“broadly”. The straightforward idea is to introduce predicates so that all shortest spu-
rious error paths are removed (not just a single one). This may require too much over-
head. It remains to be seen if one can define successful selection heuristics and greedy
strategies that remove the most “relevant” error paths, and/or that introduce only the
most “relevant” predicates (an idea for the latter may be to define relevance of a predi-
cate based on how many error paths it serves to remove). Another idea might be to use
a sort of perimeter search within the abstraction, where the error condition would be
“broadened” to the final layer of a depth-bounded backwards breadth-first search. Al-
ternatively, of course, one can use our above observations simply to design an automatic
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selection of the number of refinement steps: refine until, in an iteration k, the length of
the shortest spurious error path does, for the first time, not increase; take the heuristic
function defined by the abstract state space from iteration k − 1.

6 Conclusion

There clearly is promise in defining heuristic functions for model checking based on
predicate abstraction. It is straightforward to spell this idea out formally. Apart from
the idea, we have contributed a method to efficiently store and query the heuristic infor-
mation, a method to split an automata network without losing admissibility, and a first
empirical exploration. Our (empirical) results are not yet at a level that would be thor-
oughly satisfying, but we are competitive with the other techniques that have been tried
so far. It remains to be seen if, how, and in what sort of applications this kind of heuris-
tic can be made more efficient. We are optimistic that a refinement-based approach will
eventually turn out to be quite useful.
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Abstract. In this paper, we consider disk based exploration in priced timed au-
tomata for resource-optimal scheduling. State spaces for large problems can eas-
ily go beyond the main memory capacity. We propose the use of hard disk to
store the generated state space induced by priced timed automata. We contribute
three algorithms: External Breadth First Search for reachability analysis in ordi-
nary timed automata, External Breadth First Branch-and-Bound for cost-optimal
reachability analysis in priced timed automata, and Iterative Broadening Exter-
nal Breadth First Branch-and-Bound for a partial exploration in priced timed au-
tomata. The third algorithm achieves its completeness by trying to find an upper
bound on the optimal solution in an incomplete search tree. Iteratively, the up-
per bound is made tighter and the coverage of the search space is widened. We
present correctness and completeness proofs for the suggested algorithms along
with experimental results on different instances of aircraft landing scheduling to
validate the practicality of our approach.

1 Introduction

Real-time model checking with timed automata [2] is an important decidable subfield
of the analysis of hybrid automata [11] with a number of industrial applications. UP-
PAAL [21] is one very successful verification tool based on timed automata. It can be
used for modeling, simulation and validation of real-time systems. It deals with non-
deterministic processes with finite control structure, channel or shared variable com-
munication, and real-valued clocks. UPPAAL CORA [20] is the extension of UPPAAL

designed for efficient cost-optimal reachability analysis in priced timed automata. UP-
PAAL CORA is also competitive in resource-optimal scheduling [23].

The main limitation to the exploration of real-time systems are bounded main mem-
ory resources. Relying on virtual memory slows down the exploration due to excessive
page faults. External algorithms [24] exploit harddisk space and organize the access to
secondary memory. Originally designed for explicit graphs, external search algorithms
have shown considerable performances in the large-scale breadth-first and guided ex-
ploration of single-agent games [16,9] and in the analysis of model checking prob-
lems [13,14,18]. While [14] provides a distributed implementation of [13] for model
checking safety properties, a recent extension [8] extends the approach to general LTL
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properties. The approaches in [8,13,14] have been implemented on top of Spin model
checker and have succeeded in exploring state spaces as large as 3 Terabytes. In [25]
the model checker Murφ has been extended to use hard disk to store intermediate states.

In this paper, we extend external search algorithms for exploration in unweighted
and weighted real-time models. The challenge is to I/O efficiently deal with the exter-
nal representation and elimination of redundant states. We propose three algorithms:
External Breadth First Search for reachability analysis in ordinary timed automata, Ex-
ternal Breadth First Branch-and-Bound for cost-optimal reachability analysis in priced
timed automata, and Iterative Broadening External Breadth First Branch-and-Bound
for a partial exploration in priced timed automata. The proposed algorithms provide a
controlled and guided exploration of the state space.

The paper is structured as follows. First, we review real-time model checking with
priced timed automata. Then, we consider external exploration and introduce delayed
duplication detection in breadth-first search. Next, we present external search in real-
time domains. An introduction to priced timed automata is presented next. Since in the
priced timed automata, we are interested in a cost optimal solution, we combine external
search with branch-and-bound. Later, we present an iterative broadening variant of the
algorithm that tries to find a good upper bound by searching in only a fragment of the
state space. We have implemented our approach in UPPAAL CORA. Results for various
problems of aircraft landing scheduling are presented.

In this text we consider real-time model checking with timed automata, for which
the reachability problem is decidable but PSPACE-hard [2]. We furthermore restrict
overselves to the cost optimization variant of reachability analysis for linearly priced
timed automata. For extending these explorations to real-time model checking with
respect to temporal properties we refer the reader to [6]. Moreover,

2 Timed Automata

Timed Automata can be viewed as an extension of classical finite automata with clocks
and constraints defined on these clocks. These constraints, when corresponding to states
are called invariants, and restrict the time allowed to stay at the state. When corre-
sponding to transitions these constraints are called guards, and restrict the use of the
transition. The clocks C are real-valued variables and are used to measure durations.
The values of all the clocks in the system are denoted as a vector, also called as clock
valuation function v : C → IR+. The constraints are defined over clocks and can be
generated by the following grammar: for x, y ∈ C, a constraint α is defined as,

α ::= x ≺ d | x− y ≺ d | ¬α | (α ∧ α),

where d ∈ ZZ and ≺∈ {<,≤}. These constraints yield two different kinds of transi-
tions. The first one (delay transition) is to wait for some duration in the current state s
- provided the invariant(s) holds. This lets only the clock variables increase. The other
operation (edge transition) resets some clock variables while taking the transition t. The
operation is possible given that the guard(t) holds. We allow an edge transition to be
taken without an increase in the clock variables, i.e., in time 0. Trajectories are alter-
nating sequences of states and transitions and define a path within the automata. The
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reachability task is to determine, if the goal in form of partial assignment to the ordinary
and clock variables can be reached or not. The optimal reachability problem is to find a
trajectory that minimizes the overall path length.

For a reachability analysis on timed automata, one faces the problem of an infinite-
state space. This infiniteness is due to the fact that the clocks are real-valued and, hence,
an exhaustive state space exploration can yield to infinite branches. This problem was
solved with the introduction of a partitioning scheme based on regions [2]. A region au-
tomata creates finitely many partitions of the infinite state space based on the equivalent
classes of the clock valuations. In model checking tools like Uppaal, though, a coarser
representation called as zone [2] is used. Formally, a zone Z over a set of clocks C is a
finite conjunction of simple difference constraints of the form x− y ≤ d or x− y < d,
with x, y ∈ C and integer d1. The semantics for delay and edge transitions in a timed
automata are based on some basic operations. We restrict to changes in clock variables.
For a clock vector u and a zone Z we write u ∈ Z if u satisfies the constraints in Z .
The two main operations on (clock) zones are clock reset {x}Z = {u[0/x] | u ∈ Z}
that resets all the clocks x, delay or future (d time units) Z↑ = {u + d | u ∈ Z}.
The reachability problem in timed automata can then be reduced to the reachability
analysis in zone automata. In a zone automata, each state is basically a symbolic state
corresponding to one or many states in the original Timed Automata. The new state is
represented as a tuple (l, Z), with l being the discrete part containing the local state of
the automata, and Z is the convex |C|-dimensional hypersurface in Euclidean space.
Semantically, (l, Z) now represents the set of all states (l, u) with u ∈ Z . Let B(C) de-
notes the set of constraints defined on clocks C and P(C) the power set of C. Formally,
a Timed automata can be defined as follows:

Definition 1 (Timed Automata). A timed automata is a tuple A = (S, l0,R, Inv, T ),
where S is the set of states, (l0, Z0) is the initial state with an empty zone, R ⊆ S ×
B(C)×P(C)×S is the transition relation making states to their successors, given the
constraints on the edge are satisfied, Inv : S → B(C) assigns invariants to the states,
and T is the set of final states.

3 External Breadth First Search

Most modern operating systems hide secondary memory accesses from the program-
mer, but offer one consistent address space of virtual memory that can be larger than
the internal memory. When the program is executed, virtual addresses are translated
into physical addresses. Only those portions of the program currently needed for the
execution are copied into main memory. Caching and pre-fetching heuristics have been
developed in order to reduce the number of page faults (the referenced page does not
reside in the cache and has to be loaded from the hard disk). However, these methods
are general-purpose and can not always take full advantage of the locality inherent in
algorithms. Algorithms that explicitly manage the memory hierarchy can lead to sub-
stantial speedups, since they are more informed to predict and adjust future memory
access.

1 Unary constraints x ≤ d or x < d are rewritten as x − x0 ≤ d and x − x0 < d for some start
time clock variable x0, x − y ≥ d as y − x ≤ −d and x = y as x − y ≤ 0 and y − x ≤ 0.
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The standard model for comparing the performance of external algorithms consists
of a single processor, a small internal memory that can hold up to M data items, and
an unlimited secondary memory. The size of the input problem (in terms of the number
of records) is abbreviated by N . Moreover, the block size B governs the bandwidth of
memory transfers2. Typically M =

√
B. It is usually assumed that at the beginning of

the algorithm, the input data is stored in contiguous block on external memory, and the
same must hold for the output. Only the number of block reads and writes are counted,
computations in internal memory do not incur any cost. The single disk model for ex-
ternal algorithms has been invented by [1]. It is convenient to express the complex-
ity of external-memory algorithms using a number of frequently occurring primitive
operations:

1. scan(N) with an I/O complexity of Θ(N
B ) that can be achieved through trivial

sequential access.
2. sort(N) with an I/O complexity of Θ(N

B logM/B
N
B ) that can be achieved through

External Merge or Distribution Sort

Finite State Systems. One of the first efforts towards a search algorithm that works on
external memory is due to Munagala and Ranade [22]. The authors presented an exter-
nal memory Breadth First Search(BFS) algorithm for explicit graphs, i.e., the graphs
that are completely available beforehand in the form of adjacency lists. For example, a
road network. Later the algorithm has been adapted for the implicit graphs that are gen-
erated on-the-fly from an initial state and a set of rules/transitions, and has been called
delayed duplicate detection for frontier search. Both of the these algorithms assume an
unweighted and undirected graph and work on a similar principle. Let Succ be the suc-
cessor generation function. The algorithms maintain BFS layers on disk3. Let Open(j)
represent the set of states at layer j. Layer Open(j−1) is scanned and the set of succes-
sors is put into a buffer of size close to the main memory capacity. If the buffer becomes
full, internal sorting followed by a scanning generates a sorted duplicate-free state se-
quence in the buffer that is flushed to disk. This results in a file with states belonging to
depth j stored in the form of sorted buffers. To remove the duplicates, external sorting
is applied to unify the buffers into one sorted file. Due to sorting, all duplicates will
come close to each other and a simple scan is enough to generate a duplicate free file.
One also has to eliminate/subtract previous layers from Open(j) to avoid re-expansions.
In [22], the authors argue that for undirected graphs, subtracting two previous layers is
enough to guarantee that no state is expanded twice.

The process is repeated until Open(j−1) becomes empty, or the goal has been found.
Delayed duplicate detection applies O(sort(|Succ(Open(j−1))|)+scan(|Open(j−1)|+

2 On the hardware level the block size B is fixed by the computer architecture. From the appli-
cation program point of view it is possible to vary B according to the given resources. If only
a constant number c of internal buffers are required, the block size can be scaled to M = cB.

3 As BFS traverses the graph in layers, only two active files are needed, one for reading the
expanded states and one for writing the generated states. To I/O optimally cope with sparse
graphs, the BFS layers can be maintained in one large file together with file pointers locating
their offsets and with two internal buffers for reading and writing. With respect to the previous
footnote this implies that M = 2B.
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|Open(j − 2)|)) I/Os. Since each edge contributes to one state,
∑

j |Succ(Open(j))| =
O(|R|) and

∑
j |Open(j)| = O(|S|). This gives a total I/O complexity of O(sort(|R|)+

scan(|S|)) I/Os, which – assuming delayed duplicate detection on general state vectors
is needed – proves to be optimal [3].

The algorithm shares similarities with internal Frontier Search [15,17] that was
used for solving multiple sequence alignment problems, an idea that goes back to
Hirschberg [12]. The sorting complexity can be improved in practice by using a hash-
based delayed duplicate detection scheme. Frontier search has been used to fully ex-
plore the 15-Puzzle with 1.4 Terabytes of harddisk in about three weeks [16]. Since
harddisk operations are several times slower than the internal operations, interleav-
ing expansion and merging through threads also accelerated the performance. It has
also been used to generate very large abstract state spaces that exceed main memory
capacity [27].

4 External Search in Real-Time Systems

One of the involved differences between real-time reachability and ordinary reachabil-
ity analysis is the inclusion-check. While in (delayed) duplicate elimination we omit
all identical states from further consideration, in real-time model checking we have to
check inclusions of the form Z ⊆ Z ′ to detect duplicate states. Once Z is closed under
entailment, in the sense that no constraint of Z can be strengthened without reducing
the solution set, the time-complexity for inclusion checking is linear to the number of
constraints in Z .

Subsequently, while porting real-time model checking algorithms to an external set-
ting, we have to provide an option for the elimination of zones. Since we cannot define
a total order on zones, trivial external sorting schemes are useless in our case. In our
proposal of External Breadth First Searchwe exploit the fact that two states (l, Z) and
(l′, Z ′) are comparable only when l = l′. This motivates the definition of zone union U
where all zones correspond to the states sharing a common discrete part l, and for all
Z, Z ′ ∈ U , we have Z � Z ′.

Duplicate states can now be removed by first sorting with respect to the discrete part
l, which will bring all states sharing the same l close together, and then doing a one-to-
one comparison among all such states. The result of this phase is a file where states are
sorted according to the discrete parts l forming duplicate free zone unions.

However, the one-to-one comparison of all the zones for a particular l can only be
performed I/O-efficiently when all the states sharing the same l can be read into the
main memory. Throughout this presentation, we assume that this requirement holds.
The same approach of internalizing zone unions is available during set refinement with
respect to predecessor files. We load both the zone union from the predecessor file and
the one in the unrefined file and check for the entailment condition.

State spaces that appear in model checking are usually directed and hence just re-
moving duplicates with respect to the last previous two layers is not sufficient. The
crucial complexity parameter is the locality or duplicate elimination scope as defined
in [26], which defines the number of previous levels to be considered. In the text, this
notion of locality for an automaton A is referred to as locality(A). Let Z0 denotes the
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Procedure External Breadth First Search
Input: A timed automata A = (S , l0, R, Inv, T ); a symbolic initial state (l0, Z0).
begin

Open(0) ← {(l0, Z0)} ;; START WITH THE INITIAL STATE

j ← 1
while (Open(j − 1) �= ∅)

A(j) ← Succ(Open(j − 1))
forall (l, Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T �= ∅) ;; GOAL FOUND

return ConstructSolution() ;; RETURN SOLUTION

A′(j) ← remove redundant zones within A(j) ;; DUPLICATES WITHIN THE LAYER

for loc ← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j) ← A′(j)\
{(l, Z′) ∈ Open(j − loc) | (l, Z) ∈ A′(j), Z ⊆ Z′}

Open(j) ← A′′(j)
j ← j + 1

end

Fig. 1. External Breadth First Search: (l0, Z0) is the initial state of the timed automaton A and T
are the desired goal states

empty zone. The locality of a directed search graph with (l0, Z0) being the start state is
defined as

max{δ((l0, Z0), (l, Z))− δ((l0, Z0), (l′, Z ′))} + 1

for all states (l, Z), (l′, Z ′), with (l′, Z ′) being a successor of (l, Z) and δ being the
shortest-path distance between two states. For undirected graphs the above equation
evaluates to 2 – validating the proof of Munagala and Ranade.

In Figure 1, we depict the pseudo-code of the algorithm that performs an External
Breadth First Search on real-time systems with symbolic states representation. There
is no hash-table involve in the algorithm but we rely on alternative duplicates removal
techniques. Starting with the initial state, the algorithm performs generates all the nodes
of layer j − 1 generating the successors in layer j − 1. Duplicates are removed in two
steps: removing all the redundant zones from within a layer, and wrt. locality(A) many
previous layers. The sets A, A′, and A′′ act as temporary sets. Each set is mapped to a
file and a corresponding internal memory buffer. New states are first inserted into the
buffer and flushed to the file once the buffer is full.

For a timed automaton A with S as the set of states and R the set of transitions in
a real-time system A, we obtain the following worst-case I/O complexity of External
Breadth First Search.

Theorem 1. For the problem of symbolic reachability in timed automata, if all zone
unions individually fit into the main memory External Breadth First Search for can be
executed in O(sort(|R|) + locality(A) · scan(|S|)) I/Os.

Proof. The proof extends the I/O complexity of external Breadth-First search for
undirected graphs. For directed graphs, the duplicate elimination scope is equal to
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y ≥ 40 ≤ y ≤ 4
s1 s3s2

c = 4 x ← 0
c = c + 1 c = c + 4

x ← 0
y ≤ 4

x ← 0
c = 2

Fig. 2. Example of a priced timed automaton.

locality(A), which, in turn, effects the number of layers that we have to scan in order to
remove all the duplicates. � 

The memory assumption is almost always fulfilled in practice, as current amounts of
main memory can maintain several millions of zones. If some zone unions still fail to
fit into main memory, we have to rescan the zone unions in one file again and again. If
the size of the largest zone union is Umax, this will accumulate to O(locality(A) · |E|

Umax
·

scan(Umax)2) I/Os in the worst case for checking the duplicates in the previous layer
and for compacting a sorted file.

4.1 Linearly Priced Timed Automata

Linearly Priced Timed Automata (LPTA) are timed automata with (linear) cost vari-
ables. For the sake of brevity, we restrict their introduction to one cost variable c. Cost
increases at states with respect to a predefined rate and in transitions with respect to
an update operation. The cost-optimal reachability problem is to find a trajectory that
minimizes the overall path costs. Figure 2 shows a timed automata with 3 states s1

(init), s2 (intermediate), s3 (goal) with two clock variables x and y and the clock con-
straints defined on the transitions. The rate of cost variable c is 4 at s1 and 2 at state
s2. The minimum cost of reaching location s3 with cost 13 correspond to the trajectory
(d(0), t1, d(4), t2) of waiting 0 steps in s1 and then taking the transition to s2, where
four time steps are spent until the transition to the goal in s3.

Similar to the timed automata, for LPTAs we use the notion of priced zone to rep-
resent the symbolic states. Let ΔZ be the unique clock valuation of Z such that for all
u ∈ Z and ∀x ∈ C, we have, ΔZ ≤ u(x), i.e., it represents the lowest corner of the
|C|-dimensional hypersurface representing a zone. In the following, we ΔZ is referred
as the zone offset.

For the internal state representation, we exploit the fact that prices are linear cost
hyperplanes of zones. A priced zone Z is a triple (Z, c, r), where Z is a zone, integer c
describes the cost of ΔZ and r : C → ZZ gives the rate for a given clock. In other words,
prices of zones are defined by the respective slopes that the cost function hyperplane has
in the direction of the clock variable axes. Furthermore, with f : Z → ZZ , we denote
the cost evaluation function based on priced zonesZ . The cost value f for a given clock
x ∈ C in the priced zoneZ = (Z, c, r) can then be computed as c+

∑
x∈C r(x)(v(x)−

Δz(x)). Formally, a priced timed automata can be described as follows:
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Definition 2 (Linearly Priced Timed Automata [20]). A linearly priced timed au-
tomaton A over clocks C is a tuple (S, l0,R, Inv, P, T ), where S is a finite set of au-
tomata locations, (l0,Z0) is the initial state with empty priced zone Z0, R ⊆ S ×
B(C)× P(C)× S is the set of transitions, each consisting of a parent state, the guard
on the transition, the clocks to reset and the successor state, Inv assigns invariants to
locations, and P : (S ∪ R) → IN assigns prices to the states and transitions.

5 External Breadth First Branch-and-Boundin Priced Real-Time
Systems

Until now, we have been mainly discussing external search in directed and unweighted
state spaces. But, as we move towards priced real-time systems where timed automata
are extended with a cost variable, we find ourselves dealing with a weighted state space.
Moreover, we are no longer interested in just some path to a particular goal state, but in
an optimal path with respect to our new cost variable.

In priced real-time systems, cost f is a monotonically increasing function implying
that for all (u, v) ∈ R, we have f(u) ≤ f(v). If f∗ is the optimal solution cost, the
following definition captures the notion of cost-optimality for a set of goals T and a
start state (l0,Z0).

Definition 3. (Cost-Optimality) An algorithm is Cost-Optimal, if and only if, it termi-
nates with a state t ∈ T and f(t) = f∗.

In such directed and weighted graphs, BFS does not guarantee an optimal solution. A
natural extension of BFS is to continue the search when a goal is found and keep on
searching until a better goal is found or the state space is exhausted. A Branch-and-
Bound (BnB) search algorithm is an extension to an uninformed search algorithm that
does not stop when it finds the first goal, but instead prunes all the states that do not
improve on the last solution cost. Given that the cost function is monotone, which is the
case with f , BnB always terminates with an optimal solution.

The main traversal policy of a Branch-and-Bound algorithm can be borrowed from
either breadth-first search, depth-first search, or best-first search. A Best-First BnB al-
gorithm, though very well suited for small-sized problems can create a bottleneck for
larger problems. Best-first search picks a state u such that for all v ∈ Open, we have
f(u) ≤ f(v), for the next expansion. This selection criteria calls for a much larger hori-
zon to be saved in the memory as compared to the Breadth First Search or a Depth First
Search. Moreover, both depth-first and best-first traversal policies show no locality in
the way they expand states - unlike Breadth First Search , where every state in a layer
j is expanded before any state of the layer j + 1. This property makes Breadth First
Search a good candidate for branch-and-bound.

Because of being in a weighted state space, we have to pay an overhead by re-
opening already seen states. Consider the following example as illustrated in Fig. 3.
A Breadth-First search visits state v for the first time (top right copy) and stores it. Goal
state g is also visited and its cost is saved. When the search reaches state v for the sec-
ond time along a longer path (bottom left copy), but this time with a better cost, v will
be pruned away while subtracting previous layers and g will never be reached. If the
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g
v

v

g

Fig. 3. Anomaly in the Breadth-First Branch-and-Bound. g is a goal state

new path to g has a better cost, we lose our claim for optimality. Due to this anomaly,
the duplicate detection policy has to be adapted to make it compatible with weighted
state spaces. Now we are not allowed to remove a duplicate state if its cost is better than
what we have seen earlier.

Definition 4. Duplicate state in priced domains (l,Z) is a duplicate state of (l′,Z ′) if
and only if l = l′, Z ⊆ Z ′ and f(Z) ≥ f(Z ′).

In Figure 4, we formulate our discussion on External Breadth First Branch-and-Bound
in pseudo-code. The set Open represents the BFS layer and the sets A, A′ and A′′ are
temporary variables to construct the search frontier for the next iteration. Initially the
goal cost Cost is initialized with ∞ and a goal state with a better value is searched in
the successor set A(j). States with a higher value than the best goal cost are pruned and
saved in A′(j). In the next step, we remove redundant states based on our definition of
duplicate states.

The working of the algorithm is depicted in Figure 5. On x-axis we denote the lay-
ers of Breadth First exploration. Each layer is sorted with increasing cost value. Upon
arriving at the first goal t1, the next layer is pruned to only consider the nodes that have
a better cost value. The exploration terminates when the last goal t4 with the minimal
cost value is expanded and no successor of t4 improves the cost.

The I/O complexity of External Breadth First Branch-and-Bound algorithm depends
on the number of times a state is re-expanded. The worst-case scenario is when the
whole state space fits into one layer and the next layer has the same states but with
better cost values. The following theorem states the cost-optimality and I/O complexity
of the algorithm.

Theorem 2. For the problem of cost-optimal symbolic reachability in priced timed au-
tomata with monotonic costs, if all zone unions individually fit into the main mem-
ory, External Breadth First Branch-and-Bound is Cost-Optimal and can be executed
in O(D · (sort(|R|) + locality(A) · scan(|S|))) I/Os, where D is the maximal depth
explored.

Proof. Since External Breadth First Branch-and-Bound expands at least all states (l,Z)
with f(l,Z) < f∗, the algorithm terminates with the optimal solution. The I/O
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Procedure External Breadth First Branch-and-Bound
Input: A linearly priced timed automaton A = (S , l0, R, Inv, P, T );

A symbolic initial state (l0, Z0).
begin

Cost ← ∞; j ← 1 ;; BEST GOAL COST IS ∞
Open(0) ← {(l0, Z0)} ;; START WITH THE INITIAL STATE

while (Open(j − 1) �= ∅)
A(j) ← Succ(Open(j − 1))
forall (l, Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T �= ∅ ∧ f(Z) < Cost) ;; ANOTHER GOAL FOUND

Cost ← f(Z) ;; COST OF THE NEW GOAL

A′(j) ← A(j) \ {(l, Z) ∈ A(j) | f(Z) ≥ Cost} ;; PRUNE THE EXPENSIVE STATES

A′′(j) ← remove redundant zones within A′(j) ;; DUPLICATES WITHIN THE LAYER

for loc ← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j) ← A′′(j)\
{(l, Z ′) ∈ Open(j − loc) | (l, Z) ∈ A′′(j), Z ⊆ Z ′ ∧ f(Z) ≥ f(Z ′)}

Open(j) ← A′′(j)
j ← j + 1

if (Cost �= ∞)
return ConstructSolution() ;; CONSTRUCT SOLUTION IF FOUND

end

Fig. 4. External Breadth First Branch-and-Bound: (l0, Z0) is the symbolic initial state of the
graph A and T are the desired goal states

complexity of the algorithm is inherited from the External Breadth First Search search
(cf. Theorem 1). The factor D is introduced due to re-openings. � 

Furthermore, we can say that if there are several goal states in the state space with dif-
ferent solution costs, then an External Breadth First Branch-and-Bound run will explore
at most as many states as a complete External Breadth First Search run.

Lemma 1. If m is the number of states expanded by External Breadth First Branch-
and-Bound and n is the number of states expanded by a complete exploration of Exter-
nal Breadth First Search, then m ≤ n.

Proof. External Breadth First Branch-and-Bound does not change the order in which
states are looked at during a complete External Breadth First Search exploration. There
can be two cases:

1. |T | = 1: There exist just one goal state t which is also the last state in a breadth-first
search tree. For this case clearly n = m.

2. |T | > 1: There exists more than one goal state in the search tree. Let t1, t2 ∈ T
be the two goal states with f(t1) > f(t2) = f∗ and depth(t1) < depth(t2). Since
t1 will be expanded first, f(t1) will be used as the pruning value during the next
iterations. In case, there does not exists any state u in the search tree between t1
and t2 with f(u) > f(t2), n = m, else m < n.

� 
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Fig. 5. A sample run of External Breadth First Branch-and-Bound; the ti’s represent different
goals

The behaviour of External Breadth First Branch-and-Bound largely depends on how
fast it reaches to some solution so that it can use that solution cost to further prune
away the search space. Their exists a very trivial solution to this problem where the
user provides some upper bound U on the solution cost that can be used for pruning. In
case the upper bound U is actually equal to the optimal solution cost f∗, the algorithm
is trivially Cost-Optimal.

Lemma 2. External Breadth First Branch-and-Bound with U = f∗ is Cost-Optimal.

Since the cost function f in our real-time domain is monotonically increasing, i.e., for
all (u, v) ∈ R, we have f(u) ≤ f(v), we will never prune any node that can ultimately
take us to the goal node.

6 Iterative Broadening External Breadth First Branch-and-Bound

We observe that the efficiency of External Breadth First Branch-and-Bound is inversely
proportional to the factor U − f∗. The more realistic the upper bound is, the bigger the
pruning and, hence, the lesser the number of expansions. This observation guides us to
an iterative strategy to find a good upper bound. We suggest to use only the first k% of
the states when sorted with respect to the increasing cost value and discard the rest of
the states in the layer. Hopefully, the algorithm will terminate with a solution, giving us
a good upper bound on the optimal solution cost. Using the found solution cost as the
upper bound for an increased value of k, we hope to converge to optimal solution cost
when k approaches to 100. We will refer the parameter k as the beam width.

Unfortunately, there is an apparent problem with this approach. It is possible that
for a particular iteration we arrive at a goal state, but at the next iteration we do not.
This problem is more frequent in real-time domains, where there can be many different
states with the same f -value, residing in a set that has no total order. The algorithm is
not guaranteed to converge with increasing k (exception is when k = 100% and the
whole state space is considered). Let ki be the value of k in the ith iteration. For the
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algorithm to converge, the coverage area of the (i + 1)th iteration must be at least as
large as the coverage area of the ith iteration. Formally, for any layer j,

Openi(j) ⊆ Openi+1(j) (1)

Such a guarantee can only be given if the maximum cost value that was chosen in the
(i+1)th iteration for layer j is greater than or equal to the maximum cost value chosen
in the i-th iteration. For Condition 1 to hold throughout the exploration, we propose the
following selection criterion.

Selection Criterion. The best k% states of a layer plus all the states that have the same
f -value as that of the last state of the selected list plus all the states that have the
smaller f -value as that of the maximum selected f -value of the last iteration.

With this selection criterion, for a particular cost f ′, we either choose all the states with
a f value equal to f ′ or choose none.

Figure 6 shows the pseudo-code for the actual exploration involving upper bound
pruning and the above mentioned selection criteria. The parameters of the algorithms
are the beam width k (in percent), the upper bound U and the vector Fmax of maximal
f -values from the last iteration. With successive iterations, the value of k is increased
and the solution cost value of the previous iteration is used as an upper bound. The set
Open denotes the search frontier, sliced into layers as before. The sets A, A′ and A′′

are temporary sets, to construct the search frontier for the next iteration. Both the new
Cost and the new vector of maximal f -values are returned. We use πn to denote the
n-th element in the sorted permutation of a set.

6.1 Correctness

Let U ′
i be the cost of the solution found by Iterative Broadening External Breadth First

Branch-and-Bound in the ith iteration with k = ki and U = Ui as the arguments. In the
following, we show that the algorithm converges for increasing value of k.

Lemma 3. The selection criterion for Iterative Broadening External Breadth First
Branch-and-Boundguarantees the coverage condition for every iteration i.

Proof. We prove it by induction on the layer j. For j = 0, Openi(0) ⊆ Openi+1(0).
Assume that it holds for layer j − 1 i.e, Openi(j − 1) ⊆ Openi+1(j − 1). Gener-
ating the successor sets for both sides of the relation yields Succ(Openi(j − 1)) ⊆
Succ(Openi+1(j − 1)). Removing duplicates from the successor sets on both sides
does not change the subset condition. Now we turn to pruning. The selection criteria
guarantees that the values F j

max increase monotonically for increasing value of i, i.e.,
F j

i,max ≤ F j
i+1,max. Moreover cost plateaux are completely searched. Therefore, prun-

ing does not change the subset condition, so that Openi(j) ⊆ Openi+1(j). � 

Lemma 4. For all iterations i in Iterative Broadening External Breadth First Branch-
and-Bound, we have U ′

i+1 ≤ U ′
i .
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Procedure Iterative Broadening External Breadth First Branch-and-Bound(k,U, Fmax)
Input: A linearly priced timed automaton A = (S , l0, R, Inv, P, T );

A symbolic initial state (l0, Z0).
begin

Cost ← U ; j ← 1 ;; BEST GOAL COST IS U
Open(0) ← {(l0, Z0)} ;; ALWAYS SART WITH THE INITIAL STATE

while (Open(j − 1) �= ∅)
A(j) ← Succ(Open(j − 1))
forall (l, Z) ∈ A(j) ;; ITERATE ON ALL SUCCESSORS

if (l ∩ T �= ∅ ∧ f(Z) < Cost) ;; ANOTHER GOAL FOUND

Cost ← f(Z) ;; COST OF THE NEW GOAL

A′(j) ← A(j) \ {(l, Z) ∈ A(j) | f(Z) ≥ Cost} ;; PRUNE THE EXPENSIVE STATES

A′′(j) ← remove redundant zones within A′(j) ;; DUPLICATES WITHIN THE LAYER

for loc ← 1 to locality(A) ;; DUPLICATES SEEN IN PREVIOUS LAYERS

A′′(j) ← A′′(j)\
{(l, Z ′) ∈ Open(j − loc) | (l, Z) ∈ A′′(j), Z ⊆ Z ′ ∧ f(Z) ≥ f(Z ′)}

A′′(j) ← External-sort A′′(j) w.r.t the cost function f
n ← 
(k · |A′′(j)|)/100� ;; THERE ARE n MANY STATES IN THE BEST k%
(ln, Zn) ← πn(A′′(j)) ;; PICK THE n-TH STATE

F j
max ← max{F j

max, f(Zn)} ;; COMPUTE THE NEW MAX F VALUE FOR THE LAYER

Open(j) ← {(l, Z) ∈ A′′(j) | f(Z) ≤ F j
max} ;; KEEP ONLY THE best STATES

j ← j + 1
if (Cost < U) ;; IF THE BOUND HAS IMPROVED CONSTRUCT THE SOLUTION

ConstructSolution()
return Cost, Fmax ;; RETURN NEW UPPER BOUND

end

Fig. 6. Iterative Broadening External Breadth First Branch-and-Bound. k represents beam width,
U the upper bound, and Fmax represents the maximum cost used in each layer during the last
iteration. (l0, Z0) is the symbolic initial state of the priced timed automata A and T are the
desired goal states.

Proof. Since the coverage area of iteration i + 1 is larger than the coverage area of
iteration i, in the worst case it does not improve on the solution quality i.e., U ′

i+1 =
U ′

i ≤ Ui, else we have U ′
i+1 ≤ U ′

i ≤ Ui. In both cases, U ′
i+1 ≤ U ′

i . � 

Theorem 3. Iterative Broadening External Breadth First Branch-and-Bound converges
to the optimal solution.

Proof. Lemma 3 provides the necessary ground for the coverage of whole state space,
which implies the completeness of the algorithm and Lemma 4 provides the conver-
gence to the optimal solution cost that proves its optimality. � 

7 Experiments

We have implemented the algorithms External Breadth First Branch-and-Bound, and It-
erative Broadening External Breadth First Branch-and-Bound on top of UPPAAL CORA.
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Table 1. ALS with 1 runway and 10 planes (left), and with 2 runways and 20 planes (right)

k U U ′ Expanded

1 ∞ 970 91
20 970 970 91
40 970 810 125
60 810 710 281
80 710 700 439

100 700 700 577
100 ∞ 700 31,458

k U U ′ Expanded

0.1 ∞ 1940 1,060
20 1940 1940 1,285
40 1940 1420 18142
60 1420 1410 69,341
80 1410 1410 147,128

100 1410 1400 195,145
100 ∞ — —

Our implementation also extends UPPAAL making it capable to perform External
Breadth First Search in timed automata. The main memory requirements are kept con-
stant.4 Hash tables are replaced by files on harddisk with a small internal buffer for I/O
efficiency. As the maximum file size on most file systems is 2GB, we also provide large
file support, that splits files if they become too large. Trails for found solutions are re-
constructed by saving the predecessor together with every state, by using backtracking
along the stored files, and by looking for matching predecessors. This results in a I/O
complexity that is at most linear to the number of stored states.

A limited functionality (which nonetheless does not compromise the correctness of
the approach) of the current implementation is on the duplicate detection scope and
on external sorting. We remove duplicates from the internal buffer before flushing it
but the duplicates within different flushed buffers are not merged. All experiments are
run on a Pentium-4 with 150 GB of harddisk space and 2GB RAM running Linux. We
chose different instances of aircraft landing scheduling (ALS), for which [5] presented
a UPPAAL CORA model. It involves considering a timed automaton for each of the
airplane and runways.

We start with a smaller instance involving just 1 runway and 10 planes. Table 1 (left)
provides the results of running Iterative Broadening External Breadth First Branch-and-
Bound. Here k denotes the coverage, U the initial bound and U ′ the optimal solution
obtained. The behaviour of pruning on the number of expanded states is quite evident.
We also see a converging behaviour of the algorithm. In the last row we report the re-
sults for External Breadth First Branch-and-Bound to show the effect of pruning on
the search space. Our result matches with the one found by UPPAAL CORA. Table 1
(right) illustrates the results for the instance, where we created two independent au-
tomata for runways and planes. We then instantiated 1 runway and 10 planes from the
first type and 1 runway and 10 planes from the other. UPPAAL CORA with internal BnB
cannot solve the instance because of memory requirements. Being an exact dual, the
solution has to be 1400, which validates our implementation. With Iterative Broaden-
ing, we were able to find an optimal solution. On the other hand, External Breadth First
Branch-and-Boundcould not finalize its execution in two hours consuming about 3 GB
with 280 bytes per state, while expanding depth 19 - optimal solution lies at depth 40.
The process was manually killed.

4 Up to a leak of at most 100 MB per hour.
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For the third instance, we chose another instance of aircraft scheduling problem that
was obtained by a translation from PDDL planning models [7]. The internal version of
UPPAAL CORA failed to reach any solution for 3 planes and after quickly consuming
about 1.6 GB of main memory started to swap on harddisk. For this instance just for
3 planes a total of 13 clocks were used. Our iterative broadening strategy, for k <
100 didn’t produce any solution. For k = 100, the algorithm ran for about 12 hours
consuming a total of 311 GB and ran out of harddisk space using a mere 2KB per
state. On a harddisk with just 150 GB available, this was achieved by removing the
previous layers manually. Up till the 40th layer there was no solution. In Fig. 7, we
depict the graph where space consumption for each layer is shown. The internal size of
the program remained under 1.8 GB.

8 Conclusion

We have seen an approach for large scale scheduling based on external exploration on
priced timed automata. We contributed two algorithms: External Breadth First Branch-
and-Bound and Iterative Broadening External Breadth First Branch-and-Bound. Both
algorithms perform an external Breadth First Search on the search space and preserve
optimality of the computed cost values. Having performed an exploration of more than
a quarter of a Terabyte, we believe to have pushed the limits of practical scheduling and
model-checking in real-time domains.
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The exploration can be performed on multiple disks, as sorting and searching can
be distributed with optimal I/O efficiency. As external exploration realizes a controlled
streamed access to states, there is also potential for a parallel implementation. A par-
allel and distributed reachability checking algorithm of UPPAAL based on the Message
Passing Interface (MPI) partitions the list of explored states using a simple hash func-
tion [4]. It restricts itself to blind exploration.

We have not talked about heuristic search, although the UPPAAL CORA models in-
corporate hand-coded search heuristics to accelerate the exploration. A recent proposal
to generate heuristics for UPPAAL automatically has recently been provided by [19].

Iterative Broadening has been introduced by [10]. The Breadth First BnB approach is
related to Breadth-First Heuristic Search (BFHS) [26], a frontier search method that was
designed to save internal memory. It is based on the observation that the Breadth First
Search frontier is often much smaller than the best-first search frontier. A recent exten-
sion of BFHS is its integration with beam search known as Beam-Stack Search [28].
As it iterates on different beams, this algorithm is a natural competitor for Iterative
Broadening External Breadth First Branch-and-Bound. This algorithm is also guaran-
teed to continously converge. There are several differences to our approach. The beam
width in Beam-Stack Search is driven by the limits of main memory (previous layers
can be flushed to the harddisk). Such a limit is not needed in our case, as we exploit
the secondary storage. Therefore, we introduce parameter k to control the beam width.
Moreover, a backtracking strategy is employed to pick more elements from the previous
layer in case the upper bound is not improved.

The approach we are currently working on, splits the layer that is being expanded,
into several ones, and distributes the work among different processors. As states can be
expanded independently of each other, a speedup is expected.
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Abstract. In this paper, we propose a new method of testing concur-
rent systems by using an artificial intelligence technique: reinforcement
learning. In particular, the method verifies the liveness properties given in
temporal logic formulas and dynamically controls a target system in run-
time monitoring to efficiently reveal possible error against specification.
In this control, the learning method accumulates necessary information
by monitoring the running system. We built a simulator to evaluate this
idea and conducted experiments with simple examples. As a result we
showed the effectiveness of this approach for solving the difficult problem
of testing the liveness properties of concurrent systems.

1 Introduction

The rapid development of the Internet has increased the need to foster more
distributed concurrent systems for creating new services. Such systems provide
services to a huge number of clients, and sometimes these independently devel-
oped systems use each other. Therefore, bugs in one system may have serious
consequences on a wide range of clients and other systems. On the other hand,
guaranteeing the correctness of concurrent systems is very difficult, since an
enormous number of executions are possible depending on the timing of asyn-
chronous communication between processes in the systems. Therefore, much
work has been conducted to achieve assurance.

Formal methods and testing, the two major techniques used to guarantee the
correctness of concurrent systems, have both advantages and disadvantages. For-
mal methods allow high-level abstract requirement specifications and fully verify
them against a given protocol of concurrent systems using logical calculations.
However, this technique can only be applied to systems of limited size, because it
requires much computational power and resources. Testing, in contrast, can deal
with large-scale systems by using runtime monitoring of instrumented systems.
On the other hand, requirement specifications can be system-dependent, and the
method cannot verify all possible executions of the systems. Therefore, it may
miss some crucial exceptions.

A third approach has emerged that combines both techniques to overcome
weaknesses. Specification-based monitoring (e.g., [6]) can deal with high-level
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requirement specifications for runtime monitoring. Moreover, model checking
techniques of formal methods can be introduced to such runtime monitoring,
especially for checking the liveness property of a system, which is usually more
difficult than safety property in testing ([5]).

In this paper, we adopt this third approach and focus on finding rare but cru-
cial exceptions while checking liveness properties. This overcomes one weakness
of testing that has been neglected. In our method, when a requirement specifica-
tion is given in a restricted LTL formula, we dynamically control the execution of
concurrent systems by using a well-known AI technique, a reinforcement learn-
ing method to produce evidence of specification violations. In particular, in the
produced evidential traces, fair execution among the processes in the system
must be guaranteed. By coding the likeliness of violating a given specification
and fairness among processes in the framework of reinforcement learning, we can
find a fair execution that invalidates the specification.

This paper is organized as follows. In Section 2, we briefly explain requirement
specifications and reinforcement learning, especially Q-learning. In Section 3, we
show the basic framework of our method as well as the design of our learning
algorithm and its implementation. In Section 4, we show two example models
and experimental results along with some of their implications. In Section 5, we
present discussion and a conclusion.

2 Research Background

2.1 Testing of Liveness Properties in Temporal Formulas

Two types of previous works share similarity with ours. The first is the field
of the dynamic analysis of concurrent systems (e.g., [4], [6]). Given a temporal
logic specification, such analyses execute the systems under tests and monitor
the resulting execution traces to find a specification violation. However, all cur-
rently available dynamic analysis systems can only analyze safety properties.
Because dynamic analysis is expected to produce results from the traces of finite
executions, it is commonly believed that the scope of the analysis is inevitably
limited to safety properties.

The second similar approach is the concept recently developed by Holzmann
[5] in which liveness properties can also be the target of dynamic analysis. Using
Büchi automata translated from LTL specifications representing liveness prop-
erties, we can detect the occurrence of a cycle of Büchi automata in the trace.
This means that the system at least has the possibility of falling into a cycle
that violates liveness requirements. Consequently, we can report an alarm once
we detect the occurrence of such a cycle. Although fascinating, this idea is just
at the stage of pseudocode and has not been verified by experiments. Moreover,
this approach seems passive for obtaining counterexample traces.

Our approach addresses the verification of liveness properties. Although the
class of temporal logic specification we deal with is currently limited, we can
actively control the execution of systems to quickly produce a rare trace that
violates specification. Such ability is the main contribution of our approach.
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In the case of a finite state system, we verify whether, in that trace, there is a
loop (cycle) that violates specification and includes all expected nondeterministic
executions, especially turns of processes in fairly interleaving all executions. In
the case of an infinite system, our verification system controls the running to
produce a specified length of a long fair trace that violates specification.

2.2 Reinforcement Learning and the Q-Learning Algorithm

The framework of reinforcement learning [9] is one branch of artificial intelli-
gence. One of its goals is training an agent to maximize the total number of
rewards it receives when interacting with an environment. In a reinforcement
learning framework, the agent learns how to react with the environment based
on the rewards it has received so far. The collected knowledge is used to tune
the action-value function, which is used to choose an agent’s action expected to
maximize the total gain.

We give an overview of the Q-learning method. Q-learning is the most rep-
resentative algorithm of reinforcement learning. In this learning, we assume a
probabilistic state transition system (Markov model), which describes the be-
havior of agents and the environment. At each state, enabled actions are given
with the probabilities of resulting state transitions, when an action is chosen
from them. A reward 0 or a positive real value is also given to each state transi-
tion. The aim of Q-learning is to find a path from the initial state that maximizes
the sum of rewards of its state transitions. When there is an infinite length of
state transition path, such as reactive concurrent systems, the sum is defined
as

∑
i γi−1ri, where ri is a reward of each transition and γ is a parameter with

0<γ<1, called a discount value. In Q-learning, the action-value function is real-
ized by Q-value Q(s, a), where s is a state and a is an action enabled at s. Q(s, a)
denotes an expected maximal sum of rewards on paths from s, when action a is
chosen at s. The Q-value is updated as follows.

From state st, executing action at results in next state st+1, and the controller
is given a reward of rt+1 and then

Q(st, at) ← Q(st, at) + α
[
rt+1 + γ max Q(st+1, a)−Q(st, at)

]
.

This means that the value of action-value function Q(st, at) is adjusted to
become closer to the sum of reward (rt+1) and the expected maximum action-
value function from next state (max Q(st+1, a)). Parameter α is introduced so
that learning converges. Parameters α and γ are used to fine-tune the learning
process.

Another point of learning is that, during its early period, we should not only
try maximum value but also other actions at a state to explore many choices
to find the optimal action. Otherwise, there is a risk of being caught in a local
maximum. Therefore, we generally adopt another parameter ε to control the
algorithm. With the possibility of ε, we randomly choose the next action. This
value is decreased as analysis proceeds.

The algorithmic process of Q-learning is as follows.
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1. Let st be the current state
2. Generate a random number between 0 and 1, and compare it with ε

(a) if below ε, let at be chosen randomly
(b) if not, let at be an action with maximum Q(st, at)

3. Execute action at

(a) the state becomes st+1

(b) the reward for executing at is rt+1

4. Choose a maximum action-value among enabled actions at state st+1, i.e.,
max Q(st+1, a)

5. Update the action-value of Q(st, at) with the following formula.
6. Repeat from step 1

Therefore, the design of a solution using Q-learning involves carefully devising
the reward function and determining parameters α, γ, ε, and the rate of decrease
in ε. Each of these variables should be tuned by repeated experiments.

Here, note that in our Q-learning application, state transitions are not prob-
abilistic. That is, when an enabled action is chosen at a state, then the resulting
next state is uniquely determined.

3 Control in Runtime Monitoring

In this section, we explain our problem more concretely and then show how to
apply the reinforcement learning method to solve it.

3.1 Problem: Finding a Counterexample of Response Property

Because our method is based on monitoring, we assume that a target concurrent
system can be inspected to display its current state and execution. Moreover, it’s
also possible to control the system’s nondeterministic behaviors such as those
caused by the turns of the execution of each process in the system. This assump-
tion can be confirmed by many concurrent systems if we properly instrument
them. By monitoring the execution of a system, we gain information that can be
used to control its execution. Here we let the obtained information dynamically
affect control so that we can efficiently uncover possible errors in the system.

The requirement specification is given in a temporal formula that expresses
the liveness property. Our goal is to produce an execution trace that invalidates
specification by using the control.

To simplify the explanation of our method, here, we restrict the goal of analy-
sis to one specific temporal property: the response property [8]. A typical liveness
property argues that if event p happens, then event q should happen in the fu-
ture. In linear temporal logic, it can be specified as � ( p → ♦ q ). Given a
response property, i.e., predicates p and q, our analysis seeks an execution trace
showing that the system violates the response property. Theoretically speaking,
such a sequence should be an infinite sequence that contains a state satisfying p
(p-state), and thereafter, no state satisfying a q (q-state) event should occur. In
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a finite system, we produce a trace with a loop that invalidates specification and
includes fair turns for the processes. In an infinite system, it may be impossible to
provide such a loop as evidence. Accordingly, our method provides an invalidat-
ing fair execution with a sufficient length such that an invalidation suspect arises.

3.2 Applying Q-Learning

We use Q-learning to find an execution trace that is evidence (or possible evi-
dence) of the violation of a response property.

Now, we explain the theoretical framework of the application of Q-learning
and later mention how the framework is implemented efficiently. In this frame-
work, the following must be done: modification of the original state transition of
concurrent systems and design of a reward function. The execution trace we are
deriving has to satisfy two requirements: invalidating a given response property
and maintaining fairness among the processes. We show the above modification
and design for these two requirements.

3.2.1 Invalidating Response Properties
We explain the basic idea of invalidation. The counterexample of response prop-
erty � ( p → ♦ q ) is an execution trace where p is true sometimes and q is never
true after that time. To find such a trace, the controller explore the transition
system in the following guideline.

(1) if p has not been achieved, take an action that may lead to a state where p
is true in the future.
(2) once p becomes true, try to keep taking actions whose resulting state invali-
dates q.
(3) if q happens to be true in (2), then reset the achievement of p and go to (1).

In the case of finite state systems, we try to find a loop in stage (2), and in the
case of infinite state systems, we try to remain at stage (2) as long as possible.
To realize this control in the exploration, we encode the achievement of p in the
state transition and give a reward for remaining at stage (2).

Modification of state transition
We create two states from original state s: 〈s, before-p〉 and 〈s, after-p〉. before-
p means that p has not been achieved, while after-p means that p has. For the
transition, assume that S1 transits to S2 in the original state transition, then we
have the followings. If S2 is a p-state and a non q-state, 〈S1, before-p〉 transits
〈S2, after-p〉. If S2 is a non q-state, and 〈S1, after-p〉 transits 〈S2, after-p〉.
If S2 is a non p-state, 〈S1, before-p〉 transits 〈S2, before-p〉. If S2 is a q-state,
〈S1, after-p〉 transits 〈S2, before-p〉.

Reward design
We give a reward to transition 〈S1, before-p〉 transits 〈S2, after-p〉 and
〈S1, after-p〉 transits 〈S2, after-p〉 so that the execution trace stays at stage (2).
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3.2.2 Maintaining Fairness
We use a similar encoding of states as invalidation. State value is extended with
a set of recently executed process identifiers that is reset when all processes are
executed. The basic guideline of finding a fair execution trace is as follows.

(1) if there is a process which has not been given a execution turn, try to take
an action of the process.
(2) when every process is given a turn, reset the record of turns and go to (1).

Fairness will be achieved if the control visits (2) infinitely often. So the reward
is given to this transition.

Modification of state transition
For simplicity, we explain modification when there are two processes. Assume
two processes, p1 and p2, and three states, S0, S1, and S2. From S0, executing
p1 makes the next state S1, and executing p2 makes the next state S2. By
extending state value for fairness, the state transition diagram is changed, as
shown in Figure 1.

S2,{2}S1,{}

S0,{2}

P1 P2

S1,{1} S2,{2}

S0,{}

P1 P2

S1,{1} S2,{}

S0,{1}

P1 P2

S1 S2

S0

P1 P2

Fig. 1. Extended State Encoding for Fairness

Here, for example, state 〈S0, {1}〉 means that the original state is S0 and
process P1 has recently been executed. The second part of the state encoding
represents the set of processes that have been recently executed. Therefore, from
that state, re-executing P1 doesn’t change the second part. However, if P2 is
executed, all processes have been given turns for execution, and we can reset
the information for checking fairness. Thus, we satisfy the second part of state
encoding, which will result in reset state 〈S2, {}〉.
Reward design
We assign a reward of 1 to transitions reaching those states having an empty set
as the second part of state encoding, < S, {} >.

3.2.3 Combination of Invalidation and Fairness
We have to find an execution trace satisfying invalidation requirement and fair-
ness requirement at the same time. There are two possible ways of this combi-
nation. One is a simple combination of the two extended states. For example,
< s, after-p > and < s, {p1} > are combined to be < s, after-p, {p1} >. Ac-
tions are applied to each component of the state to derive the next state. The
combined reward is a sum of those for invalidation and fairness. This combina-
tion is simple and works fast, but there is a small possibility that only one of
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invalidation and fairness would be satisfied. Our experiments in section 4 are
based on this reward.

The other is a little complicated. After the simple combination of the states, we
introduce another state-variable, whose value is invalid, fair or reset. Initially,
the value is reset and if an action gain a reward of invalidation or fairness, then
the value becomes invalid or fairness respectively. When the current value is
invalid and the executed action gain a reward of fairness, then the value becomes
reset. Similarly, if the value is fair and the action is rewarded by invalidation,
then it becomes reset. Finally, combined reward is only given to the transition
from invalid or fair state to reset state. This idea comes form intersection of
Büchi Automata [1].

3.3 Other LTL Formulas

In a similar way, we can also apply this method to LTL formulas for such liveness
properties as ♦ ( p ∧ � q ), ♦ ( p ∧ ♦ q ), � ( � p ∨ ♦ q ), � ( p ∨ ♦� q ),
and � ( p ∨ �♦ q ). Here, they cover a wide class of LTL formulas for liveness
properties if we note the following. � ( p ∨ ♦ q ) is the response property, �
( p ∨ � q ) is a safety property, and they are not listed above. � ( p ∧ ♦ q ) is
equivalent to � p ∧ �♦ q, �♦�p is equivalent to ♦�p, and they are reduced to
a Boolean combination or a special case of some of the listed formulas.

For the counterexample, in the case of ♦ ( p ∧ � q ), for example, we have to
find an execution trace where if there is a p-state, there is always a non q-state
after that. For a finite system, we have to find a loop satisfying this condi-
tion, and the Q-learning application is designed similar to the response property
formula. Formally, for ♦ ( p ∧ � q ), we can extend the state in the same
way, but the transition rules and rewards are different. If S2 is a p-state and a
q-state, 〈S1, before-p〉 transits 〈S2, after-p〉 and 〈S1, after-p〉 transits 〈S2,
after-p〉. If S2 is a non q-state, 〈S1, before-p〉 transits 〈S2, before-p〉 and 〈S1,
after-p〉 transits 〈S2, before-p〉. Otherwise, 〈S1, before-p〉 transits 〈S2, before-
p〉 and 〈S1, after-p〉 transits 〈S2, after-p〉. Here, the actions that make tran-
sitions to 〈S, before-p〉 are rewarded. The formal description of other cases is
similar.

3.4 Implementation

In 3.2, we introduced extended state transition systems where the number of
states is multiplied. Because Q-learning updates Q-value Q(s, a), the table size
grows and the learning becomes inefficient with this extension. Actually, in its
implementation, we introduce global variables instead of local variable for after-
p/before-p, the set of executed processes and so on. Then we update the value of
this global variable, use it to decide a reward and modify Q-value Q(s, a) where
s is not extended but original one. This simplification is allowed because original
state and the corresponding extended state have a kind of bisimilation relation
in their transition systems.
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4 Experiments

In this section, we present two intermediate trials and then provide example
models and results. Using the design of Q-learning just explained, we conducted
experiments to test the feasibility and performance of the algorithm. We im-
plemented the analysis algorithm and target models using the same language
Allegro CL Common LISP v6.1 (compiled). The reflective features of LISP en-
able easy execution control of behavior models.

The two models are classical N-process versions of the mutual exclusion and
dining philosopher problems. We slightly changed the solution model of the din-
ing philosopher to seed liveness errors in it.

Mutual exclusion: We used Dijkstra’s mutual exclusion algorithm, as pre-
sented in textbooks [7], that uses a turn variable to check whether it has the
right to enter a critical section. When a process seeks entry, it first checks whether
the turn variable refers to itself. If not, it waits and keeps trying to change the
turn variable. After this checking is done, there is another checking right before
entering the critical section to assure that no other process has simultaneously
cleared the checking of the turn variable. In such cases, the process returns to
the initial state. The model is parametric to the number of processes, and each
process has 9+(n-1) states, where n is the number of processes. (n-1) states
result from checking other processes’ flags. Moreover, one shared variable turn
has n states. This algorithm assures mutual exclusion but doesn’t guarantee the
response property of lockoutfreeness; that is, there is a possibility that a pro-
cess can be repeatedly denied access to the critical section, even though it is
constantly trying to enter.

Dining philosopher: The model for the dining philosopher problem is simple.
N philosophers are sitting around a table with N forks among them. At a philoso-
pher’s initial state, he can choose the fork on his right if it hasn’t been taken
by the philosopher to his right. After taking the fork, he checks the availability
of the fork on his left. If unavailable, he concedes and releases the fork on his
right and returns to the initial state. If available, he picks it up and enters the
eating state. After finishing his meal, he releases the two forks and returns to the
initial state. The model is parametric to the number of philosophers, where each
philosopher model has seven states and each link between the two philosophers
in the ring has three states. If all philosophers follow this scheme, some may
starve by repeating a loop of getting and releasing the fork on the right.
We analyzed the following response properties.

– Mutual exclusion: Once process 0 has tried to enter the critical section, it
should eventually be permitted to enter.

– Dining philosopher: Once philosopher A picks up the first fork, he should
eventually be eating.

We used Q-learning, as explained in 3.2. The results shown in Tables 1 and
2 illustrate the number of transitions required to find a fair execution loop that
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Table 1. Number of transitions required to report mutual exclusion error

N of proc. 4 6 8 10 12 14 16 18 20

trial 1 288 520 1400 1794(1299) 7068 1514 24913 53578 168563(17731)
trial 2 267 1132 1323 1085 (352) 1996 4747 26237 38963 56886 (6794)
trial 3 153 567 2355 939 (589) 2479 5711 6763 25238 143491(14367)
trial 4 99 427 944 1557 (841) 1373 4490 19055 45806 55356(14472)*
trial 5 473 3339 1930 1804 (486) 3764 9270 8361 5469 35003(11539)

Table 2. Number of transitions required to report error for dining philosopher

N of proc. 20 50 100 150 200 250

trial 1 123 702 1657(880) 8652 3332 6518(1811)*
trial 2 497 456 1507(789) 1945 4695 5114(3635)
trial 3 273 1565 2094(938) 3826 19422 14876(2561)
trial 4 82 3351 4498(634) 6093 6281 10129(2625)
trial 5 286 1695 1591(746) 15241 3425 18269(1870)

violates the response property for the targeted models. The size of the system,
i.e., the number of processes, is used as a parameter indicating the size of the
problem. We show the length of the obtained loop in parentheses: n=10 and 20
in the mutual exclusion model and n=100 and 250 in the dining philosopher
model. As the Q-learning parameter, we set α 0.5, γ 0.9, and ε 0.2 and reduce
ε by multiplying 0.99 for every 3000 transitions (ε-interval). We executed these
experiments with 512 Mb memory and a Pentium 3 866 MHz CPU notebook PC
running a Red Hat Linux 8.0 OS. In both cases the runtime to get the desired
loop is almost linear to the number of transitions. For example, Trial 4 at n=20
for mutual exclusion and Trial 1 at n=250 for the dining philosopher, both of
which are marked with *, took about 5 minutes of practical time, respectively.
All of these experiments were successfully conducted within the allocated 20 Mb
of memory. As seen in Table 3, runtime may widely vary for a fixed n, depending
on the trials because Q-learning behaves probabilistically. In particular, a prob-
abilistic decision based on the value of ε (2. (a) step in the Q-learning algorithm)
may reset a promising current trace. We can check the dining philosopher prob-
lem for a large number of n because it has a simple relation among its processors
and is likely to produce counterexamples. On the other hand, looking at the *
marked entries in the tables, the dining philosopher model seems to take much
time to produce the same length of execution sequences compared with the mu-
tual exclusion scheme. This reflects our implementation in LISP. Since the dining
philosopher model encounters many more new states in creating the sequence,
it spends a lot of time in data allocation. Even in the case of mutual exclusion,
our method is applicable for much larger-sized models than those possible with
automated formal methods such as model checking.
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5 Discussion

In this paper, we proposed a new method of testing concurrent systems for
the liveness properties given in restricted temporal logic formulas. Instead of
simply providing test cases as those used in conventional testing methods, we
chose an active approach by controlling nondeterminism while executing con-
current systems under verification. A reinforcement learning method is applied
to accumulate information used to dynamically control analysis. To our knowl-
edge, this is the first attempt to apply the AI reinforcement learning technique
to computer programs. We believe this approach has demonstrated its effec-
tiveness in solving the difficult problem of testing liveness properties. Actually,
before applying this Q-learning method, we introduced an ad hoc method to
explore the execution path, where we performed two operations: dynamically
ranking the transition to find paths likely to violate specification and randomiz-
ing the turns of execution of the involved processes to realize fair executions.
These two operations were dynamically managed by adjusting the parame-
ters that affect the weight of usage of these operations. However, we never
successfully created a balanced trace with either operation. However, the Q-
learning method did enable the compatibility of two key properties: violation and
liveness.

As a first step, we conducted experiments with relatively simple examples. In
future work, three important tasks remain to expand this method so that it is
applicable to a wide range of systems. First, in the experiments here, we used
fixed parameter values, α, γ, and ε-interval for Q-learning. We must thoroughly
investigate how these values affect the ability to efficiently derive the desired
trace, depending on the size and structures of the targeted systems. Next, to
deal with large-sized or infinite state systems, we have to manage the state
explosion problem. Although in our experiments we memorized all encountered
states to deduce counterexamples, the mutual exclusion experiment showed that
memory is soon exhausted in complex and large systems. One candidate solution
is abstraction, as in the case of formal verification. However, in our method, it
seems too difficult to store the crucial information needed to control execution
in this framework. We believe that another approach, partial order reduction,
might provide a good strategy to decide which information can be discarded to
properly control execution.

The last problem is to elaborate the specification form. In the current method,
we restricted our attention to a limited class of LTL formulas of liveness proper-
ties: response properties and those with similar structure in LTL formulas. We
would like to introduce a systematic way of dealing with a wider class of LTL
formulas of liveness properties.
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Abstract. We present a methodology for verifying epistemic and real-time tem-
poral properties of multi-agent systems. We introduce an interpreted systems se-
mantics based on diagonal timed automata and use a real-time temporal epistemic
language to describe properties of multi-agent systems. We develop a bounded
model checking algorithm for this setting and present experimental results for a
real-time version of the alternating bit-transmission problem obtained by means
of a preliminary implementation of the technique.

1 Introduction

Reasoning about knowledge has always been a core concern in AI and in multi-agent
systems. This is no surprise given that knowledge is a key concept to model intelligent,
rational activities, human or artificial. A plethora of formalisms have been proposed and
refined over the years, many of them based on logic. One of the most widely studied is
based on variants of modal logics and is commonly referred to as epistemic logic [10].
Rather than providing a computational engine for artificial agents’ reasoning, epistemic
logic, at least in this line, is seen as a specification language for modelling and reasoning
about systems, much in common with formal methods in computer science.

Specification languages are most useful when they can be verified automatically. In
this e�ort both theorem proving and model checking techniques and tools have been
made available for epistemic logic. In particular, model checking techniques based on
BDD [18,20], bounded model checking [16], unbounded model checking [11] have
been developed and their implementation either publicly released [18,12] or made avail-
able via a web-interface [15].

� The author acknowledge support from the EPSRC (grant GR�S49353).
�� The research presented here was conducted while B. Woźna was at University College Lon-
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Given the above, one may be forgiven for thinking that verification via model check-
ing of temporal epistemic logic has now become of age; however, in many respects
the area is still lacking support for many essential functionalities. One of these is real-
time. While the formalisms above deal with discrete sequence of events, it is often of
both theoretical and practical interest to refer to a temporal model that assumes a dense
sequence of events and use operators able to represent dense temporal intervals. The
only work in this line we are aware of is [21], where a bounded model checking algo-
rithm for TECTLK was suggested. In this paper we aim to extend two key limitations
of that work in that: 1) we assume a computationally more expressive underlying se-
mantical model (diagonal timed automata), 2) we report on an in-house implementation
of this technique and discuss experimental results. Further, to exemplify the use of the
techniques described in the paper we present a real-time version of the alternating bit
transmission problem — a key requirement of this example is the expressive power of
a semantics based on diagonal timed automata as the one presented here.

The rest of the paper is organised as follows. In Section2 we present real-time inter-
preted systems, a semantics for knowledge and real-time, based on diagonal timed au-
tomata. In Section 3 we present syntax and semantics for TECTLK, the logic for which
the verification method is defined. In Section 4 we define a bounded model checking al-
gorithm for the logic; given the state-spaces in question are infinite the method involves
a tailored discretisation process. Finally we test these techniques on a novel real-time
variant of the alternating bit protocol.

2 Diagonal Real-Time Interpreted Systems

In [21] a semantics for real-time and knowledge based on non-diagonal timed automata
was proposed. Automata are given as the finer grained semantics on which real-time
interpreted systems are defined. In that framework the only clock conditions that can be
used are of the form x � c, where x is a clock, c a constant and � an equality�inequality
relation. While this is appropriate for some scenarios (like the “railroad crossing sys-
tem”), it is known that in others more expressive tests are required. Crucially, we may
need to compare two clocks of the system as an enabling condition for a transition. Aim
of this paper is to analyse this setting for the case of real-time and epistemic properties
by means of diagonal automata.

Of course from a theoretical point of view, every diagonal timed automaton can be
transformed into non-diagonal timed automaton [3], but the transformation su�ers from
an exponential blow up in the size of the automaton’s clocks. However the approach pre-
sented here is known to generate considerable complications in the verification method-
ology [5] and results in a loss of completeness in the resulting bounded model checking
technique [14].

To define diagonal real-time interpreted systems we first recall the definitions of
diagonal timed automata and their composition. We refer to [19] for discussion and
more details.

We assume a finite set X of real variables, called clocks, and for x� � � X,
� � ��� �� �� �� � �, c � IN, where IN � �0� 1� � � �� is a set of natural numbers, we
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define a set of clock constraints over X, denoted by C(X), by means of the following
grammar:

�� ::� true � x � c � x � � � c � �� 	 ��

A clock valuation � is a total function from X into the set of non-negative real num-
bers IR; IRX denotes the set of all the clock valuations. For �� � C(X), ���� denotes the
set of all the clock valuations that satisfy ��. The clock valuation that assigns the value
0 to all clocks is denoted by �0. For � � IRX and Æ � IR, � � Æ is the clock valuation that
assigns the value �(x) � Æ to each clock x. For � � IRX and Y 
 X, �[Y] denotes the
clock valuation of X that assigns the value 0 to each clock in Y and leaves the values of
the other clocks unchanged.

Definition 1 (Diagonal timed automaton). Let �� be a set of propositional vari-
ables. A diagonal timed automaton is a tuple 
 � (�� L� l0� X���R��), where � is a
nonempty finite set of actions, L is a nonempty finite set of locations, l0 � L is an initial
location, � : L �� 2�� is a function assigning to each location a set of atomic propo-
sitions true in that location, X is a finite set of clocks, � : L �� C(X) is a state invariant
function, and R 
 L � � � C(X) � 2X � L is a transition relation.

An element (l� �� ��� Y� l�) � R represents a transition from location l to location l�

labelled with an action �. The invariant condition states that the automaton is allowed
to remain in location l only as long as the constraint �(l) is satisfied. The guard �� has
to be satisfied to enable the transition. The transition resets all clocks in the set Y to the
value 0.

As usual, the semantics of diagonal timed automata is defined by associating dense
models to them.

Definition 2 (Dense model). Let 
 � (�� L� l0� X���R��) be a diagonal timed au-
tomaton, and �(
) 
 C(X) a set of all the clock constrains occurring in any enabling
condition used in the transition relation R or in a state invariant of 
. A dense model
for
 is a tuple�(
) � (��IR�Q� q0��� ��), where ��IR is a set of labels, Q � L�IRX

is a set of states, q0 � (l0� �0) is an initial state, �� : Q �� 2�� is a valuation function
such that ��((l� �)) � �(l), and� 
 Q� (�� IR)�Q is a time�action transition relation
defined by:

– Time transition: (l� �)
Æ
� (l� � � Æ) i� (�0 � Æ� � Æ) � � Æ� � ��(l)�

– Action transition: (l� �)
�
� (l�� ��) i� (��� � �(
))(�Y 
 X) such that �� � �[Y],

(l� �� ��� Y� l�) � R, � � ����, and �� � ��(l�)�.

In this paper we take diagonal timed automata to provide the lower level, fine-grained
description for the agents; the composition of these defines a multi-agent systems. So
the computations of a multi-agent system are simply the traces generated by the execu-
tions of a network of diagonal timed automata that communicate through shared actions.
We model this communication via the standard notion of the parallel composition [19],
as defined below.

Consider a network of m diagonal timed automata 
i � (�i� Li� l0i � Xi��i�Ri��i), for
i � 1� � � � �m, such that Li � L j � � for all i� j � �1� � � � �m� and i � j, and denote
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by �(�) � �1 � i � m � � � �i� the set of indexes of the automata performing
action �. The parallel composition of m diagonal timed automata 
i is a diagonal
timed automaton 
 � (�� L� l0� X���R��), where � �

�m
i�1 �i, L �

�m
i�1 Li, l0 �

(l01� � � � � l
0
m), X �

�m
i�1 Xi, �((l1� � � � � lm)) �

�m
i�1 �i(li), �((l1� � � � � lm)) �

�m
i�1 �i(li),

and a transition ((l1� � � � � lm)� �� ��� Y� (l�1� � � � � l
�
m)) � R i� (�i � �(�)) (li� �� ��i� Yi� l�i) � Ri,

�� �
�

i��(�) ��i, Y �
�

i��(�) Yi, and (� j � �1� � � � �m� � �(�)) l�j � l j.
Observe that, given the above, transitions in which actions are not shared are inter-

leaved, whereas the transitions caused by shared action are synchronised.
To give a definition of real-time interpreted systems that supports clock constraints

of the form x � � � c, we first define the notion of weak region equivalence [22].

Definition 3 (Weak Region Equivalence). Assume a set of clocks X, and for any t �
IR let �t� denote the fractional (respectively integral) part of t (respectively �t�). The
weak region equivalence is a relation �
 IRX � IRX defined as follows. For two clock
valuations u and � in IRX, u � � i� all the following conditions hold:

(E1.) �u(x)� � ��(x)�, for all x � X.
(E2.) �u(x)� � 0 i� ��(x)� � 0, for all x � X.
(E3.) �u(x)� � �u(�)� i� ��(x)� � ��(�)�, for all x� � � X.

We will use Z, Z�, and so on to denote the equivalence classes induced by the relation
�. As customary, we call these classes zones, and the set of all the zones we denote by
Z(�X�).

Definition 4 (Diagonal real-time interpreted system). Consider m diagonal timed
automata and their parallel composition. A diagonal real-time interpreted system (or a
model) is a tuple M � (� � IR�Q� q0����1� � � � ��m� ��) such that � � IR, Q, q0, �, and�� are defined as in Definition 2, and for each agent i, �i 
 Q � Q is a relation defined
by: (l� �) �i (l�� ��) i� li((l� �)) � li((l�� ��)) and � � ��, where li : Q �� Li is a function
returning the location of agent i from a global state.

As in [10] we consider two (global) states to be epistemically indistinguishable for agent
i if its local state (i.e., its location) is the same in the two global states. Additionally we
assume the agents’ clocks to be globally visible, although only privately resettable. For
two states to be indistinguishable we further assume the clocks of the states belong to
the same zone. This is not dissimilar from [21].

3 TECTLK

In this section we introduce the logic TECTLK(Timed Existential CTL with Knowl-
edge). While the logic is the same as the one described in [21], satisfaction is here
defined on diagonal real-time interpreted systems.

Syntax. Let �� be a set of propositional variables containing the symbol �, 
� a set
of m agents, and I an interval in IR with integer bounds of the form [n� n�], [n� n�), (n� n�],
(n� n�), (n��), and [n��), for n� n� � IN. For p � ��, i � 
�, and 	 
 
�, the set of
TECTLK formulae is defined by the following grammar:


 :� p �  p � 
 	 
 � 
 ! 
 � E(
UI
) � E(
RI
) � Ki
 � D�
 � C�
 � E�




Bounded Model Checking Real-Time Multi-agent Systems with Clock Di�erences 99

The other temporal modalities are defined as usual: "
de f
�  �, EGI


de f
� E("RI
),

EFI

de f
� E(�UI
). Moreover, �# �

def
�  � ! �.

Semantics. Let M � (� � IR�Q� q0����1� � � � ��m� ��) be a model. We define a q0-run


 as a sequence of states: q0
Æ0
� q0 � Æ0

�0
� q1

Æ1
� q1 � Æ1

�1
� q2

Æ2
� � � �, where qi � Q,

�i � � and Æi � IR� for each i � IN, and by f�(q0) we denote the set of all such q0-runs.
We say that a state q � Q is reachable if there is a q0�run 
 such that there exists a
state in 
 equal to q. Finally, in order to give a semantics to TECTLK, we introduce the
notation of a dense path �� corresponding to a run 
. A dense path �� corresponding to

 is a mapping from IR to a set of states Q such that ��(r) � qi � Æ for r � � i

j�0Æ j � Æ

with i � IN and 0 � Æ � Æi. Moreover, we define the following epistemic relations:
�E
�
�
�

i�� �i, and �C
�
� (�E

�
)� (the transitive closure of �E

�
), and �D

�
�
�

i�� �i, where
	 
 
�.

Definition 5. Let M be a model such that the set Q contains reachable states only.
M� q �� � denotes that � is true at state q in M. The satisfaction relation �� is defined
inductively as follows:

M� q �� p i� p � ��(q)� M� q �� � ! � i� q �� � or q �� ��

M� q ��  p i� p � ��(q)� M� q �� � 	 � i� q �� � and q �� ��

M� q �� E(�UI�) i� (�
 � f�(q))(�r � I)[M� ��(r) �� � and (�r� � r)M� ��(r�) �� �]�
M� q �� E(�RI�) i� (�
 � f�(q))(�r � I)[M� ��(r) �� � or (�r� � r)M� ��(r�) �� �]�
M� q �� Ki� i� (�q� � Q)(q �i q� and M� q� �� �)�
M� q �� D�� i� (�q� � Q)(q �D

�
q� and M� q� �� �)�

M� q �� E�� i� (�q� � Q)(q �E
�

q� and M� q� �� �)�
M� q �� C�� i� (�q� � Q)(q �C

�
q� and M� q� �� �)�

We say a TECTLK formula 
 is valid in M (denoted by M �� 
) i� M� q0 �� 
, i.e.,

 is true at the initial state of the model M. In the rest of the paper we are concerned
with devising and implementing an automatic model checking algorithm for checking
whether a formula 
 is valid in a given model M.

4 Bounded Model Checking for TECTLK

Bounded model checking (BMC) is a popular model checking technique for the verifi-
cation of reactive systems [4,7]. On discrete-time, it is supported by nuSMV [6] and in
its epistemic extension by Verics [15]. Verifying whether a system S satisfies a property
P amounts to checking MS �� �P, where MS is a model capturing S and �P is a prop-
erty representing P. In BMC this check is turned into the propositional satisfiability test
(ultimately performed by ad-hoc highly-eÆcient SAT solvers) of [MS ] 	 [�P], where
[MS ]� [�P] are appropriate Boolean formulae representing a truncated portion of the
model MS and the modal formula �P. We refer to [16] for a description of the technique
for the case of discrete-time epistemic properties.

To define a BMC method for diagonal real-time interpreted systems, we adapt the
BMC technique for TECTLK and non-diagonal automata presented in [21]. We first
translate the BMC problem from TECTLK into the BMC problem for ECTLK�, and
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then we define BMC for ECTLK�. We do not report full details and proofs in this
abstract. These can be found in [14].

4.1 Translation from TECTLK to ECTLK�

When dealing with real-time one can use DBMs [8], CDDs [2], or a discretisation tech-
nique [1,17,22] to represent zones. In the BMC settings for branching real-time logics it
is customary to discretise zones. In particular, here we take the discretisation scheme in-
troduced in [22], which uses the following set of discretised clock’s values and labels as
primitives. Let � be a set of rational numbers, and Dm � �d � � � (�k � �) d $ 2m � k�
and Em � �e � � � (�k � �) e $ 2m � k and e � 0� for every m � IN. Then,
D �

�
�

m�0 Dm defines the set of discretised clock’s values, and E �
�
�

m�1 Em defines
the set of labels. We use this technique to define a discretised model, which is crucial
for the translation of the model checking problem for TECTLK to the model checking
problem for ECTLK� as described below.

Definition 6 (Discretised model). Let 
 � (�� L� l0� X���R��) be a diagonal timed
automaton resulting from the parallel composition of m diagonal timed automata
(agents). A discretised model for 
 is a tuple Md � (� � E� S � s0��d��

d
1� � � � ��

d
m�
��d),

where S � L � DX is a set of states, s0 � (l0� �0) is the initial state, �d
i 
 S � S

is an relation defined by (l� �) �d
i (l�� ��) i� li((l� �)) � li((l�� ��)) and � � ��, for each

agent i, ��d : S �� 2�� is a valuation function defined by ��d((l� �)) � �(l), and
�d
 S � (� � E) � S is a time�action transition relation defined by:

– Time transition: for any Æ � E, (l� �)
Æ
�d (l� � � Æ) i� (l� �)

Æ
� (l� � � Æ) in �(
) and

(�Æ� � Æ) � � Æ� � � or � � Æ� � � � Æ,

– Action transition: for any � � �, (l� �)
�
�d (l�� ��) i� (�Æ)(����) such that (l� �)

Æ
�d

(l� ���) and (l� ���)
�
� (l�� ��) in �(
).

The general idea of the translation is the same as the one in [21], but obviously given
the di�erent capabilities there are di�erences. In particular, the discretised model used
here is infinite; so while the procedure in [21] is sound and complete, the one here is
only sound.1

Specifically, given a multi-agent system modelled by a network of diagonal timed
automata 
i � (�i� Li� l0i � Xi��i�Ri��i) and a TECTLK formula 
, we extend each
automaton
i by a new clock �, an action ��, and transitions to obtain a new automaton



�

i � (�i������ Li� l0i � X
�

i ��i�R�i ��i) with X�

i � Xi���� and R�i � Ri��(l� ��� true� ���� l) �
l � L�. The clock � corresponds to all the timing intervals appearing in 
, and special
transitions are used to reset the new clock. We then construct the discretised model for
the parallel composition of
�

i , denoted by
�, and augment its valuation function with
the set of propositional variables containing a new proposition p��I for every interval I
appearing in 
, and a new proposition pb representing that a state s is boundary, i.e., at
least one clock from the original automata has to have the fractional part of its valuation

1 Note though that because of the complexity in the SAT translation and satisfiability checks,
BMC is never complete in practice when the system is suÆciently complex, so this is not a real
concern.



Bounded Model Checking Real-Time Multi-agent Systems with Clock Di�erences 101

equal to zero in s. Finally, we translate the TECTLK formula 
 into an ECTLK� formula
� � cr(
) such that model checking of 
 over the model for the parallel composition of

i can be reduced to the model checking of � over the discretised model for
�. Before
we define the final part of the above construction, we will first introduce the syntax and
semantics for ECTLK�.

Let p � ���
� �� � �pb� � �p��I � I is an interval in 
�. The set of ECTLK�

formulae is defined by the following grammar:

� :� p �  p � � 	 � � � ! � � E�(�U�) � E�(�R�) � Ki� � D�� � C�� � E��

The satisfaction relation for ECTLK� is defined with respect to a discretised model
Md. Namely, assume that s is a state, �, � formulae of ECTLK�, �� denotes the part
of �d, where transitions are labelled with elements of � � E, and �� denotes the
transitions that reset the clock �. Next, define a path � in Md to be a sequence (s0� s1� � � �)
of states such that si �� si�1 for each i � IN, and denote the set of all the paths starting
at s in Md by �(s). Then, the satisfaction relation �� for ECTLK� is defined as follows:

Md� s �� p i� p � ��d(s),
Md� s ��  p i� p � ��d(s),
Md� s �� � ! � i� Md� s �� � or Md� s �� �,
Md� s �� � 	 � i� Md� s �� � and Md� s �� �,
Md� s �� E�(�U�) i� (�s� � S )(s �� s� and (�� � �(s�))(�m � 0)

[Md� �(m) �� � and (� j � m) Md� �( j) �� �]),
Md� s �� E�(�R�) i� (�s� � S )(s �� s� and (�� � �(s�))(�m � 0)

[Md� �(m) �� � or (� j � m) Md� �( j) �� �]),

Md� s �� Ki� i� (�� � �(s0))(� j � 0)(Md� �( j) �� � and s �i �( j))�
Md� s �� D�� i� (�� � �(s0))(� j � 0)(Md� �( j) �� � and s �D

�
�( j))�

Md� s �� E�� i� (�� � �(s0))(� j � 0)(Md� �( j) �� � and s �E
�
�( j))�

Md� s �� C�� i� (�� � �(s0))(� j � 0)(Md� �( j) �� � and s �C
�
�( j))�

Definition 7 (Validity). An ECTLK� formula 
 is valid in Md (denoted Md �� 
) i�
Md� s0 �� 
, i.e., 
 is true at the initial state of Md.

We can now translate inductively a TECTLK formula 
 into the ECTLK� formula cr(
);
note that for the propositional and epistemic part of ECTLK� the translation is defined
as the corresponding translation in [16].

% cr(p) � p for p � ���,
% cr( p) �  cr(p) for p � ���,
% cr(� ! �) � cr(�) ! cr(�),
% cr(� 	 �) � cr(�) 	 cr(�),
% cr(E(�UI�)) � E�(cr(�)U(cr(�) 	 p��I 	 (pb ! cr(�)))),
% cr(E(�RIi�)) � E�(cr(�)R( p��Ii ! (cr(�) 	 (pb ! cr(�))))).
% cr(Ki�) � Kicr(�),
% cr(D��) � D�cr(�),
% cr(E��) � E�cr(�),
% cr(C��) � C�cr(�),
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The following lemma shows that validity of the TECTLK formula 
 over the model
for 
 is equivalent to the validity of cr(
) over the discretised model for 
� with the
extended valuation function.

Lemma 1 ([14]). Let 
 be a TECTLK formula, M a model, and Md the discretised

version of M. Further, let (l� �) �X
de f
� (l� ��X). For any state (l� �) � Q there exists

(l� ��) � S such that (l� ��)�X � (l� �) and M� (l� �) �� 
 i� Md� (l� ��) �� cr(
).

4.2 ECTLK� Bounded Model Checking

All the known BMC techniques are based on so called k�bounded semantics. In particu-
lar, BMC for ECTLK� is based on the k�bounded semantics for ECTLK�, the definition
of which we present below.

We start with some auxiliary notions. Let Md � (� � E� S � s0��d��
d
1� � � � ��

d
m�
��d)

be a discretised model, and k � IN� a bound. As before, we denote by �� the part of
�d, where transitions are labelled with elements of � � E, and by �� the transitions
that reset the clock �. A k�path � in Md is a finite sequence of states (s0� � � � � sk) such
that si �� si�1 for each 0 � i � k, and �k(s) denotes the set of all the k-paths starting
at s in Md . A k-model for Md is a structure Mk � (� � E� S � s0� Pk� P���

d
1� � � � ��

d
m�
��d),

where Pk �
�

s�S �k(s) and P� � �(s� s�) � s �� s� and s� s� � S �.
The satisfaction of the temporal operator E�R on a k-path in the bounded case de-

pends on whether or not � represents a loop. To indicate k-paths that can simulate loops,
we define a function loop : Pk �� 2IN by loop(�) � �i � 0 � i � k and �(k) �� �(i)�.

We can now define a bounded semantics for ECTLK� formulae. Let k � IN�, Md be a
discretised model, Mk its k-model, �� � ECTLK� formulae, and let Mk� s �� � denote that
� is true at the state s of Mk. Then, the (bounded) satisfaction relation �� for ECTLK� is
defined as follows:

Mk� s �� p i� p � ��d(s), Mk� s �� � ! � i� Mk� s �� � or Mk� s �� �,
Mk� s ��  p i� p � ��d(s)� Mk� s �� � 	 � i� Mk� s �� � and Mk� s �� �,

Mk� s �� Ki� i� (�� � �k(s0))(�0 � j � k)(Mk� �( j) �� � and s �i �( j))�
Mk� s �� D�� i� (�� � �k(s0))(�0 � j � k)(Mk� �( j) �� � and s �D

�
�( j))�

Mk� s �� E�� i� (�� � �k(s0))(�0 � j � k)(Mk� �( j) �� � and s �E
�
�( j))�

Mk� s �� C�� i� (�� � �k(s0))(�0 � j � k)(Mk� �( j) �� � and s �C
�
�( j))�

Mk� s �� E�(�U�) i� (�s� � S )((s� s�) � P� and (�� � �k(s�))(�0 � j � k)
(Mk� �( j) �� � and (�0 � i � j) Mk� �(i) �� �))�

Mk� s �� E�(�R�) i� (�s� � S )((s� s�) � P� and (�� � �k(s�))[(�0 � j � k)
(Mk� �( j) �� � and (�0 � i � j)Mk� �(i) �� �) or
(�0 � j � k)(Mk� �( j) �� � and loop(�) � �)]).

Note that for the propositional and epistemic part of ECTLK�, the (bounded) satisfac-
tion relation �� is defined as the corresponding relation in [21].

Definition 8 (Validity). An ECTLK� formula 
 is valid in a k-model Mk (denoted
Md ��k 
) i� Mk� s0 �� 
, i.e., 
 is true at the initial state of the k-model Mk.

We can now describe how the model checking problem (Md �� 
) can be reduced to the
bounded model checking problem (Md ��k 
).
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Theorem 1. Let k � IN�, Md be a discretised model, Mk its k-model, and 
 an ECTLK�

formula. For any s in Md, Mk� s �� 
 implies Md� s �� 
.

Proof. By straightforward induction on the length of 
.

Note that both the discretised model and its k-model are infinite. So, to perform bounded
model checking we have to consider a finite submodels of a k-model such that an
ECTLK� formula � holds in Md if and only if � holds in a finite submodel of Mk.

Definition 9. An s-submodel of k-model Mk � (� � E� S � s0� Pk� P���
d
1� � � � ��

d
m�
��d) is

a tuple M�(s) � (� � E� S �� s� P�k� P
�
���

�

1� � � � ��
�
m�
���

d) such that P�k 
 Pk, S � � �r � S �

(�� � P�k)(�i � k)�(i) � r� � �s�, P�� 
 P� � (S � � S �), ��i��
d
i �(S � � S �) for each

i � �1� � � � �m�, and ���

d �
��d � S �.

The bounded semantics for ECTLK� over a submodel M�(s) is defined as for Mk. More-
over, the following theorem holds.

We now introduce a definition of a function fk that gives a bound on the number of
k-paths in the submodel M�(s), and a function fk�� that gives a bound on the number
of elements of the set P�� in the submodel M�(s). It can be shown that these bound
guarantee that the validity of � in M�(s) is equivalent to the validity of � in Mk (see
Theorem 2). The function fk : ECTLK� � IN is defined by:

% fk(p) � fk( p) � 0, where p � ���,
% fk(� ! �) � max� fk(�)� fk(�)�,
% fk(� 	 �) � fk(�) � fk(�),
% fk(E�(�U�)) � k $ fk(�) � fk(�) � 1,
% fk(E�(�R�)) � (k � 1) $ fk(�) � fk(�) � 1,
% fk(Y�) � fk(�) � 1, for Y � �Ki�D��E��,
% fk(C��) � fk(�) � k.

The function fk�� : ECTLK� � IN is defined by:

% fk��(p) � fk��( p) � 0, where p � ���,
% fk��(� ! �) � max� fk��(�)� fk��(�)�,
% fk��(� 	 �) � fk��(�) � fk��(�),
% fk��(E�(�U�)) � k $ fk��(�) � fk��(�) � 1,
% fk��(E�(�R�)) � (k � 1) $ fk��(�) � fk��(�) � 1,
% fk��(Y�) � fk��(�), for Y � �Ki�D��E��C��.

Theorem 2 ([14]). Let Md be a discretised model, and � an ECTLK� formula. If there
exist k � IN� and s0-submodel M�(s0) of k-model Mk with P�k � fk(�) and �P�k��� � fk��(�)

such that M�(s0) ��k �, then Md �� �.

Given the above, note that both functions fk and fk�� give the upper bound on the number
of paths in P�k and number of transitions in P�k��, respectively.

Having defined the bounded semantics, we can easily translate the model checking
problem for ECTLK� to the problem of satisfiability of a Boolean formula that encodes
all the discretised model for an ECTLK� formula under consideration and an appropri-
ate fragments of the considered discretised models. The translation can be done in a
similar way as the one in [21] and it is presented in the next section.
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4.3 Translation to Boolean Formulae

The main idea of BMC for ECTLK� consists in translating the model checking problem
for ECTLK� into the satisfiability problem of a propositional formula. Namely, given
an ECTLK� formula �, a discretised model Md, and a bound k � IN�, this proposition

formula, denoted by [Md� �]k, is of the form: [M	�s0

d ]k 	 [�]Mk . The first conjunct rep-
resents possible submodels of Md such that they consist of fk(�) k�paths of Md and at
least one of these submodels is an s0-submodel. The second conjunct encodes a number
of constraints that must hold on these submodels for � to be satisfied. Once this trans-
lation is defined, checking satisfiability of an ECTLK� formula can be done by means
of a SAT-checker. In order to define [Md� �]k, we proceed as follows.

Let us assume that each state s of submodels of k-model Mk for the discretised model
Md is encoded by a bit-vector whose length, say b, depends on the number of locations,
the number of clocks, and the bound k � IN�. So, each such a state s can be repre-
sented by a vector � � (�[1]� � � � � �[b]) (called global state variable), where each �[i],
for i � 1� � � � � b, is a propositional variable (called state variable). Notice that we dis-
tinguish between states s encoded as sequences of 0s and 1s and their representations
in terms of propositional variables �[i]. A finite sequence (�0� � � � � �k) of global state
variables is called a symbolic k-path. In general, we need to consider not just one but
a number of symbolic k-paths. This number depends on the formula � under investi-
gation, and it is returned as the value fk(�) of the function fk. The j-th symbolic k-
path is denoted by �0� j� � � � � �k� j, where �i� j are global state variables for 1 � j � fk(�),
0 � i � k. For two global state variables �� ��, we define the following propositional
formulae:

% Is(�) is a formula over �, which is true for a valuation s
 of � i� s
 � s.
% p(�) is a formula over �, which is true for a valuation s
 of � i� p � �d(s
), where

p � ���,
% Hi(�� ��) is a formula over two global state variables � � (�� �), �� � (��� ��), which

is true for valuations s� of �, s�� of ��, s� of �, and s�� of �� i� li(s�) � li(s�� ) and
s� � s�� (encodes equality of local states of agent i).

% &(�� ��) is a formula over �� ��, which is true for two valuations s
 of � and s
� of
�� i� s
 �� s
� (encodes the non-resetting transition relation of Md),

% R�(�� ��) is a formula over �, ��, which is true for two valuations s
 of � and s
�

of �� i� s
 �� s
� (encodes the transitions resetting the clock �).

The propositional formula [Md� �]k is defined over state variables �0�0, �n�m, for 0 �

m � k and 1 � n � fk(�). We start o� with a definition of its first conjunct, i.e., [M	�s0

d ]k,
which constrains the fk(�) symbolic k-paths to be valid k-path of Mk. Namely,

[M	�s0

d ]k :� Is0(�0�0) 	
fk(	)�
n�1

k�1�
m�0

&(�m�n� �m�1�n)

The second conjunct, i.e., the formula [�]Mk � [�][0�0]
k , is inductively defined as follows:
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[p][m�n]
k :� p(�m�n), [� 	 �][m�n]

k :� [�][m�n]
k 	 [�][m�n]

k ,
[ p][m�n]

k :�  p(�m�n), [� ! �][m�n]
k :� [�][m�n]

k ! [�][m�n]
k ,

[E�(�U�)][m�n]
k :�

� fk(	)
i�1 (R�(�m�n� �0�i) 	

�k
j�0([�][ j�i]

k 	
� j�1

l�0 [�][l�i]
k ))�

[E�(�R�)][m�n]
k :�

� fk(	)
i�1 (R�(�m�n� �0�i) 	 (

�k
j�0([�][ j�i]

k 	
� j

l�0[�][l�i]
k )

!
�k

j�0[�][ j�i]
k 	

�k
l�0 &(�k�i� �l�i))),

[Kl�]
[m�n]
k :�

� fk(	)
i�1 (Is0(�0�i) 	

�k
j�0([�][ j�i]

k 	 Hl(�m�n� � j�i)))�

[D��]
[m�n]
k :�

� fk(	)
i�1 (Is0(�0�i) 	

�k
j�0([�][ j�i]

k 	
�

l�� Hl(�m�n� � j�i)))�

[E��]
[m�n]
k :�

� fk(	)
i�1 (Is0(�0�i) 	

�k
j�0([�][ j�i]

k 	
�

l�� Hl(�m�n� � j�i)))�

[C��]
[m�n]
k :� [

�k
i�1(E�)i�][m�n]

k .

Lemma 2. Let Md be discretised model, Mk its k-model, and � an ECTLK� formula.
For each state s of Md, the following holds: [M	�s

d ]k 	 [�]Mk is satisfiable i� there is a
submodel M�(s) of Mk with �P�k � � fk(�) and �P��� � fk��(�) such that M�(s)� s �� �.

Proof. (��) Let [M	�s
d ]k 	 [�]Mk be satisfiable. By the definition of the translation, the

propositional formula [�]Mk encodes all the sets of k�paths of size fk(�) which satisfy
the formula � and all the sets of transitions resetting the clock � of size fk��(�) . By the
definition of the unfolding of the transition relation, the propositional formula [M	�s]k

encodes fk(�) symbolic k-paths to be valid k�paths of Mk. Hence, there is a set of
k�paths in Mk, which satisfies the formula � of size smaller or equal to fk(�), and
there is a set of transitions resetting the clock � of size fk��(�). Thus, we conclude
that there is a submodel M�(s) of Mk with �P�k � � fk(�) and �P��� � fk��(�) such that
M�(s)� s �� �.

(��) The proof is by induction on the length of �. The lemma follows directly for
the propositional variables and their negations. Consider the following cases:

% For � � � ! �� � 	 �, or the temporal operators the proof is like in [16].
% Let � � Kl�. If M�(s)� s �� Kl� with �P�k� � fk(Kl�) and �P��� � fk��(Kl�), then

by the definition of bounded semantics we have that there is a k�path � such that
�(0) � s0 and (� j � k) s �l �( j)) and M�(s)� �( j) �� �. Hence, by induction we
obtain that for some j � k the propositional formula [�][0�0]

k 	 [M���( j)]k is satisfi-
able. Let ii � fk(�) � 1 be the index of a new symbolic k�path which satisfies the
formula Is0(�0�ii). Therefore, by the construction above, it follows that the proposi-
tional formula Is0 (�0�ii) 	

�k
j�0
�
[�][ j�ii]

k 	 Hl(�0�0� � j�ii)
	
	 [MKl��s]k is satisfiable.

Therefore, the following propositional formula is satisfiable:



1�i� fk(Kl�)

�
Is0(�0�i) 	

k

j�0

�
[�][ j�i]

k 	 Hl(�0�0� � j�i)
	
	 [MKl��s]k

�
�

Hence, by the definition of the translation of an ECTLK� formula, the above for-

mula is equal to the propositional formula [Kl�][0�0]
k 	 [MKl��s]k.

% The other proofs are similar.

Theorem 3. Let Md be a discretised model, and � an ECTLK� formula. If there exists

k � IN� such that [�]Mk 	 [M	�s0

d ]k is satisfiable, then Md �� � .

Proof. Follows from Theorem 2 and Lemma 2.
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5 A Real-Time Alternating Bit Transmission Problem

To exemplify the theoretical concepts of the previous sections we analyse a real-time
version of one of the variants of the alternating bit protocol. In the original formula-
tion [10] two agents attempt to transmit information over an unreliable communication
channel, which they have access to. Sender ' starts sending the bit to receiver &. & is
initially silent but as soon as it receives the bit from ', it starts sending acknowledg-
ments back to '. As soon as ' receives one of these acknowledgments, it stops sending
the bit, the system is reset and a new bit is sent. Under these conditions it can be checked
automatically [18] that whenever ' receives an acknowledgment it then knows (in the
formal epistemic sense) that & knows the value of the bit (expressed by the formula
AG(recack # K	K
recbit)). Consider now one of the variants analysed in [13] where
& may (erroneously) send acknowledgments without having received the bit first. In-
tuitively in this case, the property above will no longer hold; indeed this can also be
checked automatically [18].

We extend the scenario above by adding the clock expressions. Assume that each
agent has two possibly faulty communication channels to choose from to send bits
or acknowledgments. In order to optimise the performance of the transmission both
agents concurrently run a channel monitoring service in the background. To this aim
they regularly send each other control bits and keep track of the time elapsed since the
receipt of a control bit from the other party. The agents send the information bit on the
channel that has demonstrated to be in the better working condition, i.e., the one that
has recently been able to transmit the control bit from the other party.

To formalise the above we use a network of diagonal timed automata consisting
of an automaton for ' (see Figure 1) and an automaton for & (see Figure 2). ' can
be in 11 di�erent local states: Decide (“' selects which bit will be sent”), 0-ctr-bit
and 1-ctr-bit (“' sends a control bit and listens to &’s control bit”), 0-select and 1-
select (“' selects the channel to use to send bit 0 (1), or he sends a control bit”), 0-
channel-1 and 0-channel-2 (“' sends bit 0 through channel 1 (2)”), 1-channel-1 and
1-channel-2, (“' sends bit 1 through channel 1 (2)”), 0-ack and 1-ack (“' has received
an acknowledgment”). ' can perform independently the following actions: 0-bit, 1-bit
(“bit 0 (1) is sent”), scbs-1- f ail, scbs-2- f ail (“a control bit is sent to a faulty channel 1
(2)”), s-send- f ail (“bit 0 or 1 is sent to a faulty channel”), nothin�, and next-bit whose
interpretation is obvious. The remaining actions are synchronised with &.
& can be in 10 di�erent local states: �ait (“& is listening to the channels”), ctr-bit (“&

sends a control bit, or he sends a faulty acknowledgment”), r0 and r1 (“& has received
bit 0 (1)”), 0-select and 1-select (“& selects the channel for the ack”), 0-channel-1, 0-
channel-2, 1-channel-1 and 1-channel-2, (“& sends an ack on channel 1 (2).”). & can
perform independently the following actions: scbr-1- f ail, scbr-2- f ail (“a control bit is
sent to a faulty channel 1 (2)”), r-send- f ail (“an ack is sent to a faulty channel”). We
refer to Figures 1, 2 for a pictorial representation.

Further, ' uses 3 clocks (x� x1� x2�), and & three more (�� �1� �2). Control bits are
sent at regular intervals: t1 for channel 1 and t2 for channel 2; the clocks x and � are
used for this purpose. Clocks xi and �i measure the time since a control bit has been
received; xi gets reset when ' receives a control bit on channel i, likewise for �i for &.
When sending bits (either information bits of acknowledgments) each agent evaluates
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Decide

0-ctr-bit

0-select

0-channel-1 0-channel-2

0-ack

...

next-bit

0-bit 1-bit

scbr-1
x1 :� 0

scbr-2
x2 :� 0

s-select-1
x1 � x2 � (t1 � t2)

s-select-2
x2 � x1 � (t1 � t2)

0-send-ack

0-send
s-send-fail

0-send

s-send-fail

scbs-1, x � t1,x :� 0scbs-2,x � t2, x :� 0

scbs-1-fail
x � t1,x :� 0

scbs-2-fail
x � t2,x :� 0

scbs-2

x � t1,x :� 0

scbs-1

x � t2, x :� 0

scbs-1-fail
x � t1,x :� 0

scbs-2-fail
x � t2,x :� 0

nothing

Fig. 1. An automaton for Sender - the part for bit 0. The part for bit 1 is symmetric.

the following two clock expressions z1 � z2 � (t1 � t2) and z2 � z1 � (t1 � t2) for
z � �x� ��. When the former expression is true, channel 1 is chosen, when the latter
is true, channel 2 is chosen. Intuitively the above guarantees that the channel that has
been demonstrated to be alive more recently gets selected. Using the threshold t1 � t2
enables an agent not to switch channel unnecessarily often (for instance simply because
they are desynchronised). Note that ease with which the use of a clock di�erence allows
us to implement real-time channel selection without having a large state space for the
automata in question.

The automata run in parallel and synchronise through the actions: scbs-1, scbs-2,
scbr-1, and scbr-2 (“send a control bit via channel 1 (2)”), 0-send, and 1-send (“send
bit 0 (1)”), 0-send-ack, and 1-send-ack (“ send an acknowledgment to bit 0 (1)”).

Given the above, one can construct the automaton 
BT P that describes the whole
alternating bit protocol running in real time as well as the set of traces generated by it.
In our approach this is done automatically by the bounded model checking
implementation.

Now, assume the following set of propositional variables: �� � �recack� bit0�, and
the following usual interpretation for the proposition variables in ��:
�	(0-channel-1) � �	(0-channel-2) � �	(0-ack) � bit0, and �	(0-ack) �

�	(1-ack) � recack.
The typical specification properties that one may be interested in checking for the

example above are the following: 1) “forever in the future from t1 if an acknowledgment
has been received by ' and the value of the bit is 0, then & knows the bit is equal to 0”
and 2) “forever in the future from t1 if an acknowledgment has been received by ' and
the value of the bit is 0, then ' knows that & knows the bit is equal to 0.”
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By means of an implementation of the technique above we were able to check that
the properties above are not satisfied (as intuitively is the case given &’s possible be-
haviour). More precisely, we can check that the negations of the properties above are
true, i.e., the following formulae are satisfied on the model for 
BT P:


1 � EF[t1��](recack 	 bit0 	 K
( bit0)), and

2 � EF[t1��](recack 	 bit0 	 K	K
( bit0)).

wait ctr-bit

r0

0-select

0-channel-1 0-channel-2

...

1-send

scbs-1,�1 :� 0

scbs-2,�2 :� 0

scbr-1, � � t1, � :� 0scbr-2, � � t2, � :� 0

scbr-1-fail, � � t1, � :� 0

scbr-2-fail
� � t2, � :� 0

0-send

scbs-1
�1 :� 0

scbs-2
�2 :� 0

scbr-1, � � t1, � :� 0scbr-2, � � t2, � :� 0

scbr-1-fail
� � t1, � :� 0

scbr-2-fail
� � t2, � :� 0

r-select-1

�1 � �2 � (t1 � t2)

r-select-2

�2 � �1 � (t1 � t2)

0-send-ack

r-send-fail

0-send-ack

r-send-fail

0-send-ack

0-send-ack

scbr-1, � � t1, � :� 0

scbr-2
� � t2, � :� 0

scbr-1-fail
� � t1, � :� 0

scbr-2-fail
� � t2, � :� 0

scbr-1, � � t1, � :� 0
scbr-2, � � t2, � :� 0

scbr-1-fail
� � t1, � :� 0

scbr-2-fail
� � t2, � :� 0

Fig. 2. An automaton for Receiver - the part for bit 0. The part for bit 1 is symmetric.

Tables 1 and 2 illustrate error traces for the above properties, i.e., it shows the witness
for the formulae 
1 and 
2, respectively, which have been generated by our implemen-
tation.

To verify satisfaction of 
1 over the model for 
BT P, 2 paths of length 11 were re-
quired. To do this we checked satisfaction of the Boolean formula encoding the transla-
tion of the formula 
1 and the appropriate fragments of the model for
BT P as described
in [14]. The formula in question consists of 125260 variables and 258821 clauses; our
implementation needed 19.6 second and 18.7 MB memory to produce it. Its satisfaction
was checked by MiniSat [9], a mainstream SAT solver; 4.0 seconds and 19.9 MB of
memory were needed to check this.

For what concerns the satisfaction of 
2, the corresponding experimental results are
presented in Table 3 and in Table 4. Table 3 refers to the search assuming 3 paths



Bounded Model Checking Real-Time Multi-agent Systems with Clock Di�erences 109

Table 1. A witness for the property �1

depth locations clocks’ valuation
0 decide ait 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192
1 decide ait 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192
2 0-ctr-bit ait 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192
3 0-ctr-bit ait 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192
4 0-ctr-bit ait 1 7168

8192 1 7168
8192 1 7168

8192 1 7168
8192 1 7168

8192 1 7168
8192 1 7168

8192
5 0-ctr-bit ait 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
6 0-ctr-bit ctr-bit 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
7 0-ctr-bit ctr-bit 2 7524

8192 2 7524
8192 2 7524

8192 2 7524
8192 2 7524

8192 2 7524
8192 2 7524

8192
8 0-ctr-bit ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
9 0-select ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
10 0-select ctr-bit 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192
11 0-ack 0-channel-1 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192

Table 2. A witness for the property �2

depth locations clocks’ valuation
0 decide ait 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192
1 decide ait 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192
2 0-ctr-bit ait 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192 0 4608
8192 0 4608

8192
3 0-ctr-bit ait 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192
4 0-ctr-bit ait 1 7168

8192 1 7168
8192 1 7168

8192 1 7168
8192 1 7168

8192 1 7168
8192 1 7168

8192
5 0-ctr-bit ait 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
6 0-ctr-bit ctr-bit 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
7 0-ctr-bit ctr-bit 2 7524

8192 2 7524
8192 2 7524

8192 2 7524
8192 2 7524

8192 2 7524
8192 2 7524

8192
8 0-ctr-bit ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
9 0-select ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
10 0-select ctr-bit 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192
11 0-ack 0-channel-2 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192

are needed (this is the upper bound is given by the function fk); Table 4 summarises
the result for a search of only 1 path. The tables show the following data: the first
column represents the bound on the model for 
BT P; the next two show the number
of variables and clauses generated by BMC during the translation of 
2 into a Boolean
formula; the next two show the time and memory needed by BMC to generate the set
of clauses; the next two columns give the time and the memory required by MiniSat to
check satisfaction, and the last column shows the answer given by MiniSat.

For reference, all the above experiments were performed on an AMD Athlon
XP 1800 (1544 MHz), 768 MB main memory, running Linux with Kernel 2.6.15.
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Table 3. The computation of the witness - 3 paths

BMC MiniSat
k variables clauses sec MB sec MB satisfiable
2 12243 28811 2.7 4.5 0.1 5.1 NO
3 20771 48413 8.8 5.7 0.1 6.2 NO
4 35589 85115 24.0 8.0 0.2 8.1 NO
5 49967 117551 55.2 9.8 0.6 10.1 NO
6 66952 154829 115.7 11.9 1.1 11.9 NO
7 86688 197030 206.1 14.9 2.4 14.2 NO
8 120067 278552 356.9 19.2 12.9 20.2 NO
9 147687 337205 587.3 23.9 9.9 24.1 NO

10 178628 401492 922.3 27.5 20.5 28.6 NO
11 213034 471494 1364.4 31.4 320.0 81.8 YES

Table 4. The computation of the witness - 1 path

BMC MiniSat
k variables clauses sec MB sec MB satisfiable
2 3570 7706 0.2 3.2 0.1 3.7 NO
3 6021 12877 0.5 3.5 0.1 4.2 NO
4 10164 22320 1.3 4.2 0.1 4.7 NO
5 14213 30551 2.5 4.6 0.1 5.2 NO
6 18997 39934 4.8 5.3 0.1 5.8 NO
7 24564 50496 8.4 6.0 0.1 6.2 NO
8 33578 70301 14.4 7.0 0.2 7.5 NO
9 41277 84625 23.6 8.3 0.4 8.5 NO

10 49925 100281 33.7 9.2 0.4 9.4 NO
11 59570 117296 54.0 10.2 0.9 10.3 YES

Unfortunately we are not able to compare these results to other tools as we are not aware
of any other implementation available that is capable of a real-time epistemic check for
(diagonal and non-diagonal) automata.

6 Conclusions

Model checking real-time in AI and MAS is still in its infancy. In [21] a first proposal
was made for a bounded model checking algorithm for real-time epistemic properties
based on non-diagonal automata semantics. In this paper we have tried to extend that
work by allowing the expressivity of clock di�erences. We have proposed a syntax, se-
mantics for the logic, as well as a bounded model checking method, and showed experi-
mental results of a preliminary implementation for a real-time version of the alternating
bit protocol.
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Abstract. Reasoning about agents and modalities such as knowledge
and belief leads to models where different relations over states co-exist,
or equivalently, where information (labels, actions) is associated to state
transitions. This paper discusses how to augment classical CTL symbolic
model-checking to support logics with actions such as A-CTL (action-
CTL), and how this can be implemented using BDDs in tools such as
the SMV/NuSMV package. Considering general action-state structures,
we first propose a natural extension of CTL to actions, called Action-
Restricted CTL (ARCTL) and adapt classical results from CTL to ex-
press model checking based on three functions eax, eau and eag. On these
grounds, we present two different implementations of symbolic model
checking with actions. The first approach encodes action-state models
and logics into pure state-based models and logics, that can be checked
with existing model-checkers. The second approach consists in a native
implementation of the three extended operators. We report on our pro-
totype implementation of both approaches based on NuSMV and give
an overview of how this is used to model-check the temporal epistemic
logic CTLK.

1 Introduction

In the domains of artificial intelligence and multi-agent systems, it is natural to
reason about both actions and states. Moreover, a number of modalities, such
as epistemic or deontic, can be formalized in terms of relations over the states
of a system or model. In this setting, it is desirable to have analysis techniques
and tools where information can be associated to both states and transitions of
the model, or more generally where more than one relation over states can be
considered within the same model.

Symbolic model checking, and the SMV tool in particular, have adopted a
state-based view of the systems to be verified, expressed mathematically as
Kripke structures. Meanwhile, another large body of work has developed based
on an observable, action-based view of systems, where the state itself is ab-
stracted away and models are characterized by the visible actions they can per-
form, and expressed mathematically as Labeled Transition Systems (LTS). These
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two views can be, and have been, combined. In this paper, we designate as mixed
the models and logics that combine state-based and action-based reasoning. How-
ever, to the best of our knowledge, there is no widely available tool that allows
to apply the power of BDD-based symbolic model checking of branching-time
logics to mixed models and logics.

This paper discusses how BDD-based symbolic model checking for mixed log-
ics can be achieved, and presents two different implementations:

1. by reducing the mixed-logic model-checking problem to a state-based model-
checking problem that can be solved with existing tools;

2. by extending existing model-checkers to support mixed models and logics
natively.

To this end, after reviewing the prominent existing state-based and action-
based models (Kripke structures, labeled transition systems) and logics (CTL,
A-CTL) in Section 2, we set our formal definition of mixed models, introduce
a mixed logic, ARCTL, that cleanly generalizes CTL with actions, and extend
symbolic model checking from CTL to ARCTL in Section 3. In Section 4, we
describe how mixed models and logics can be reduced to Kripke structures and
CTL while preserving validity. In Section 5, we describe a prototype implemen-
tation of both approaches based on the NuSMV tool [1]. In Section 6, we give an
overview of how a model checker for the temporal epistemic logic CTLK [2] has
been built on top of these implementations. Finally, Section 7 discusses related
work and Section 8 draws conclusions and perspectives.

2 Background

2.1 State-Based Logics

Computation Tree Logic (CTL) [3,4] is the classical branching-time logic used in
symbolic model checking. Given a set of propositional atoms P , a CTL formula
is interpreted over a Kripke Structure (KS) K = 〈S,S0,R,V〉, where S is a
non-empty set of states, S0 ⊆ S is a set of possible initial states, R ⊆ S × S
is a transition relation, denoted s −→ s′, and V : S → 2P is an interpretation
function.

The syntax of CTL is given by the following grammar, where p ∈ P and φ
and γ range respectively over CTL (state) formulae and path formulae:

φ ::= true
∣∣ p

∣∣ ¬φ
∣∣ φ ∧ φ

∣∣ Eγ
∣∣ Aγ

γ ::= X φ
∣∣ φ U φ

with the usual derived Boolean operators and the following derived temporal
operators:

EF φ = E[true U φ] AF φ = A[true U φ]
EG φ = ¬AF ¬φ AG φ = ¬EF ¬φ

Note that temporal logic operators take precedence over Boolean connectives:
EX φ ∨ φ′ = (EX φ) ∨ φ′ �= EX (φ ∨ φ′). The semantics of a CTL formula φ is
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defined as a satisfaction relation s |= φ over states s ∈ S, see for example [4].
We postpone the detailed definition of semantics to mixed logics in Section 3.2.

All CTL operators can be reduced to EX, EU and EG. Symbolic model checking
of CTL over finite models, as implemented in the SMV family of tools, works
by providing BDD-based evaluation functions ex(S), eu(S, S′) and eg(S), where
S, S′ are Boolean encodings of sets of states, that compute the semantics of
the corresponding operators. In the case of eu and eg, this means computing
fixpoints over ex (which are guaranteed to converge thanks to finiteness of the
model), for example eg(S) = νZ.S ∩ ex(Z) [4].

CTL symbolic model checking has been extended to support fairness, in the
form of a set of conditions that characterize fair computations. Fairness is not
taken into consideration within the scope of this paper, but the issue is never-
theless discussed in Section 3.4.

2.2 Action-Based Logics

In contrast to state-based logics such as CTL, action-based logics focus on the
actions that a system can perform. These logics are interpreted over labeled
transition systems (LTS). A LTS is a structure L = 〈S,S0,A, T 〉, where S and
S0 are as in Kripke structures, A is a set of actions and T ⊆ S × A × S is a
labeled transition relation. We write s

a−→ s′ for (s, a, s′) ∈ T , s � a−→ when no
such s′ exists and s �−→ when no such a and s′ exist.

For example, Action CTL, or A-CTL [5], is an adaptation of CTL to labeled
transition systems.1 A-CTL extends CTL operators with action formulae α in-
terpreted over actions a ∈ A. For example, the A-CTL formula A[φαUα′ φ′] holds
if all paths are of the form

s0
a1−→ s1 · · ·

ak−→ sk
a′
−→ s′

for some k, where all si, all ai, s′ and a′ respectively satisfy φ, α, φ′ and α′. The
full syntax and semantics of A-CTL, defined over LTS, can be found in [5]. [6]
provides a comprehensive survey of temporal logics with actions, and A-CTL in
particular, including fixpoint characterizations of A-CTL operators.

Note that classical action-based models also feature a distinguished internal
action. We do not deal explicitly with internal actions in the scope of this paper;
our definitions correspond to a “strong” interpretation that treats all actions
uniformly.

3 Mixing States and Actions

In this section, we set our formalisation of mixed models and formulae, that
combine state-based and model-based reasoning.
1 Action CTL is usually abbreviated ACTL, but that could be confused with the

universal fragment of CTL, unfortunately also referred to as ACTL, for example in
[4].
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3.1 Mixed Transition Systems

We can generalize both state-based models (Kripke structures, KS) and
action-based models (Labeled Transition Systems, or LTS) into a common super-
structure that we call mixed transition system (MTS). Given two sets of proposi-
tional atoms PS and PA, respectively over states and actions, a mixed transition
system over PS and PA is a structure M = 〈S,S0,A, T ,VS ,VA〉, where

– S is a non-empty set of states;
– S0 ⊆ S is the set of possible initial states;
– A is a non-empty set of actions;
– T ⊆ S ×A× S is the transition relation;
– VS : S → 2PS is the interpretation function on states;
– VA : A → 2PA is the interpretation function on actions.

MTS combine actions over transitions from LTS and propositional atoms
over states from KS, and add propositional atoms over actions that allow for
a generalized and more uniform presentation of logic formulae over MTS
models.

An MTS can be projected to a KS sub-structure 〈S,S0,R,VS〉, where R =
{(s, s′)

∣∣ (s, a, s′) ∈ T }, or an LTS sub-structure 〈S,S0,A, T 〉, and thus both
state-based and action-based logics can be interpreted over an MTS.

A path π of M is a finite or infinite sequence of connected transition steps
(si−1, ai, si) ∈ T , denoted as s0

a1−→ s1
a2−→ s2 . . .. In particular, a zero-length

path consists of a single state. Let T ∗ (resp. T ω) be the set of finite (resp. infinite)
paths of M. Given a finite (resp. infinite) path π = s0

a1−→ s1
a2−→ s2 . . .

an−→ sn

(
an+1−→ . . .), we define:

– |π| = n (resp. ω), the length of a path;
– π(i) = si, the i-th state of π (0 ≤ i ≤ |π|);
– π(•i) = ai, the i-th action of π (1 ≤ i ≤ |π|).

A full-path is a path that is either infinite or ends in a terminal state. We
define Π(M) (or just Π) as the set of full-paths of M, and Π(M, s) (or Π(s))
as the set of full-paths from state s.

Π(M) := T ω ∪ {π ∈ T ∗ ∣∣ (|π| = n ∧ π(n) �−→)}
Π(M, s) := {π ∈ Π(M)

∣∣ π(0) = s}

Note that unlike classical definitions of CTL model-checking, we do not enforce
the transition T to be serial; deadlocks or refused actions are in general possible
and full-paths need not be infinite. Even if T were required to be serial, action-
based logics have to consider cases where some action a is not allowed (s � a−→),
so deadlock states where no action is allowed (s �−→) arise as a particular case
anyway.
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3.2 Action-Restricted CTL

As a logic over mixed state-action models, we introduce a generalization of CTL,
called Action-Restricted CTL, or ARCTL. ARCTL has the same temporal oper-
ators as CTL, except that they can be restricted to paths whose actions satisfy
a given action formula α. The syntax of ARCTL is given by the following gram-
mar, where p ∈ PS , b ∈ PA, and φ, γ and α range respectively over ARCTL
(state) formulae, path formulae and action formulae:

φ ::= true
∣∣ p

∣∣ ¬φ
∣∣ φ ∧ φ

∣∣ Eαγ
∣∣ Aαγ

α ::= true
∣∣ b

∣∣ ¬α
∣∣ α ∧ α

γ ::= X φ
∣∣ φ U φ

Derived forms such as EαF φ are defined as for CTL. Intuitively, given an
ARCTL formula Eαγ, the path formula γ is evaluated over full α-prefixes of
full-paths of the model. To formalize that, we define the α-restriction of a MTS
M = 〈S,S0,A, T ,VS ,VA〉 as the structure M|α = 〈S,S0,A, T |α,VS ,VA〉, where
T |α = {(s, a, s′) ∈ T

∣∣ a |= α}. For conciseness we write Π |α for Π(M|α) and
Π |α(s) for Π(M|α, s). Note that, by construction, any path (or full-path) of
M|α is a prefix of a path (or full-path) of M. Aα and Eα are interpreted over
the full-paths of M|α, and the path formulae are defined as in standard CTL.
We define the semantic relation (M, s) |= φ, or concisely s |= φ, as follows (we
omit the natural semantics of Boolean connectives and propositional atoms):

s |= Aαγ iff ∀π ∈ Π |α(s) · π |= γ

s |= Eαγ iff ∃π ∈ Π |α(s) · π |= γ

π |= X φ iff |π| ≥ 1 ∧ π(1) |= φ

π |= φ U φ′ iff ∃i ≥ 0 · |π| ≥ i ∧ π(i) |= φ′ ∧ ∀k ∈ [0, i− 1] · π(k) |= φ

The underlined terms pertain to finite paths. In particular, if s � α−→ (i.e. s � a−→
for any a |= α), then Π |α(s) = {s}, containing a single zero-length trace, and
both EαX φ and AαX ¬φ are false for any φ, whereas ¬EαX true is true. For any
φ, α and s, we have that one and only one of EαXφ, AαX¬φ and ¬EαXtrue holds
in s. Also note that EαG φ also holds in s if there is a finite α-full-path from
s where φ holds. In contrast, we can define EαGω φ that holds only for infinite
α-full-paths, with

EαGω φ = EαG (φ ∧ EαX true)

If we restrict action formulae to α = true and consider the Kripke sub-
structure in M, we obtain a semantics for CTL with finite and infinite traces.
One can easily check that this semantics is consistent with the classical one for
infinite traces.

Note that A-CTL can be extended to mixed models in the same manner.
We chose instead to introduce ARCTL because it offers a more uniform inter-
pretation of the action conditions: for all path formulae γ, Aαγ means “for all
α-full-paths, γ holds”. In contrast, in A-CTL, AFαφ is co-variant in α (“all paths
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do remain α-paths until they eventually reach φ”) while AGα φ is contra-variant
(“all paths, as long as they remain α-paths, maintain φ”). Besides its structural
simplicity, this also makes ARCTL appropriate for cases where actions denote
transition relations of a different nature, such as temporal and epistemic modali-
ties: if some action t is used for temporal transitions, temporal properties can be
expressed as t-restricted ARCTL formulae, with their usual CTL interpretation.
This was indeed the initial motivation for formulating this logic, as illustrated
in section 6. On the other hand, it must be noted that A-CTL is more expres-
sive than ARCTL on pure action models: A(φ αUα′ φ′) cannot be translated to
ARCTL (unless α and α′ are disjoint).

3.3 Model Checking of ARCTL

Symbolic model-checking can be applied to ARCTL in the same way as to CTL,
with two extensions: (i) transitions are constrained by action formulae, and (ii)
additional conditions are set to deal with finite paths. For (i), the pre-image
computation embodied in the function ex(S) is extended to deal with actions.
For (ii), we modify the computations to deal specifically with finite paths.

Given S, S′ ∈ 2S and A ∈ 2A, we define functions eax(A, S), eau(A, S, S′)
and eag(A, S) as follows:

eax(A, S) = {s
∣∣ ∃a, s′ · s a−→ s′ ∧ a ∈ A ∧ s′ ∈ S}

eau(A, S, S′) = μZ · S′ ∪ (S ∩ eax(A, Z))
eag(A, S) = νZ · S ∩ eax(A, Z)

where we write μZ.F (Z) (resp. νZ.F (Z)) for the least (resp. greatest) fixpoint
of F . For convenience, we also define eax(A) = eax(A,S). Whereas eax and eau
exactly capture the ARCTL operators EαXand EαU, note that eag accepts infinite
paths only; it corresponds to EαGω and not EαG. These functions are immediate
translations of fixpoint characterizations of the corresponding operators:

Eα[φ U φ′] = μZ · φ′ ∨ (φ ∧ EαX Z)
EαGω φ = νZ · φ ∧ EαX Z

These characterizations can be proven through a simple adaptation of similar
results on CTL, see for example [4]. As an aside, they also imply that ARCTL,
like CTL, belongs to the alternation-free fragment of modal μ-calculus, that can
be checked in linear time w.r.t. the size of the model and formula.

As in CTL, all ARCTL operators can be expressed in terms of the three prim-
itive computations above, as follows (where ¬S stands for S \S, the complement
of S). Note the underlined eax(A) terms, needed for finite traces.

[[EαX φ]] = eax([[α]], [[φ]])
[[AαX φ]] = eax([[α]]) ∩ ¬eax([[α]],¬[[φ]])

[[Eα(φ U φ′)]] = eau([[α]], [[φ]], [[φ′]])
[[Aα(φ U φ′)]] = ¬eau([[α]],¬[[φ′]],¬[[φ′]] ∩ (¬[[φ]] ∪ ¬eax([[α]]))) ∩ ¬eag([[α]],¬[[φ′]])
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The evaluation functions eax, eau and eag can be implemented in a BDD-
based model checker like NuSMV, based on a Boolean encoding of S and A,
in a very similar way to CTL model-checking as implemented in SMV [7]. A
prototype of such an implementation is described in Section 5.3.

3.4 Fairness

CTL symbolic model checking can also handle fairness conditions, in the form of
a set of sets of states F ∈ 22S

. A path is fair if it visits every set in F infinitely
often. The functions ex, eg and eu have variants exF , egF and euF restricted to
fair paths.

This approach can be extended to mixed models and ARCTL, by considering
fair α-full-paths when evaluating α-restricted operators. In that setting, fairness
conditions can be extended to sets of states-action pairs F ∈ 22S×A

(this is
indeed already implemented in NuSMV).

However, by their very definition, fair paths are necessarily infinite, so fair
model checking does not work well at all with finite paths. If a state has no
infinite path from it, then there is no fair path either, and all E formulae are
false and all A formulae are true. As an extreme example, if s

a−→ s′ �−→, then
s �|= EX 〈true〉, because there is no fair path from s′.

Extending fair CTL model checking to action-based logics interpreted over
finite α-full-paths is an important issue to be further investigated.

4 From Mixed to State-Based Logic

This section presents a transformation post from mixed transition systems to
Kripke structures and from ARCTL to classical CTL, such that the combined
transformation preserves validity. This provides a way to reduce action-based and
mixed model-checking to standard CTL model checking, that can be performed
using a tool such as SMV.

4.1 Post-Projection of Mixed Models

Given a MTS M = 〈S,S0,A, T ,VS ,VA〉 over PS and PA, we define the post-
projection as the KS post(M) = 〈S′,S′

0,R′,V ′〉 over P ′ = PS ∪ PA, where

– S′ = A× S,
– S′

0 = A× S0,
– R′ = {((a, s), (a′, s′))

∣∣ (s, a′, s′) ∈ T ∧ a ∈ A},
– V ′((a, s)) = VA(a) ∪ VS(s).

In essence, transition labels are projected into the post-state, and s
a−→ s′ be-

comes (∗, s) −→ (a, s′), for any action ∗. By construction, the action atoms in
PA become state atoms in P ′.
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4.2 Post-Projection of Action-Based Logics

As action atoms of a MTS M become state atoms in the KS post(M), action-
based formulae can be converted into plain CTL formulae on post(M), with
action conditions turning into state conditions. Formally, given an ARCTL state
formula φ, we define the CTL formula post(φ) as follows:

post(EαX φ) = EX (α ∧ post(φ))
post(AαX φ) = AX (α ⇒ post(φ)) ∧ EX α

post(Eα(φ U φ′)) = post(φ′) ∨ (post(φ) ∧ EX E[α ∧ post(φ) U α ∧ post(φ′)])
post(Aα(φ U φ′)) = post(φ′) ∨ (post(φ) ∧ EX α

∧ AX A[post(φ) ∧ EX α U ¬α ∨ post(φ′)])

Appropriately, the semantics is preserved by the transformation, in the sense of
the generalized semantics of CTL with finite paths:

(M, s) |= φ iff (post(M), s) |= post(φ)

which can be proved by structural induction on φ. The details are tedious but
the principle is straightforward.

Some sub-formulae get replicated in the transformation, so an exponential
increase in the size of the transformed formula may result in the worst case. In
practice however, the caching of BDD computation results largely mitigates the
impact of this increase when performing symbolic model checking. In any case,
this provides additional motivation for using a native implementation of action-
based logics in the model checker, that avoids the redundant computations. This
is the topic of the next section.

5 Action-Based Model-Checking in SMV

This section discusses how SMV has been extended to support logics with
actions. We first give an overview of SMV, then we describe two different imple-
mentations of actions in SMV: the first one by implementing the post transfor-
mation as a pre-processing stage using the macro-processor M4, the second one
by modifying the SMV tool itself to support mixed formulae in specifications.

5.1 Overview of SMV

SMV is a symbolic model checker that evaluates CTL specifications on a finite-
state model described in a custom language. While SMV was initially developed
at Carnegie Mellon [7], we have been using NuSMV, an open-source extended re-
implementation of the tool [8]. NuSMV uses an efficient BDD library to perform
symbolic model checking of formulae. (NuSMV also supports linear temporal
logic and SAT-based bounded model checking.)

The latest version of NuSMV (2.2) provides partial support for action-style
constructs, in the form of input variables. Input variables (IVARs) are not part
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of states, and they are used to represent input values for models (typically, they
correspond to the input lines of a circuit). Technically, these variables are exis-
tentially quantified out when computing transitions. Input variables can appear
in transition relations, but they are not allowed in CTL formulae.

NuSMV uses BDDs to perform model checking of CTL formulae: given encod-
ings of state and input variables into Boolean arrays s and a, respectively, the
transition relation T and initial states S0 are compiled by NuSMV into BDDs
[[T ]](s, a, s′) and [[S0]](s). Then, for any CTL formula φ, the BDD [[φ]](s) corre-
sponding to the set of states of the model in which the formula holds is computed
inductively on the formula’s structure, based on (fair) implementations of the
functions ex, eg and eu described before.

SMV supports two styles for declaring transitions: the assignment style is
based on non-deterministic assignments of initial and next values of each vari-
able, whereas the constraint style allows arbitrary conditions over variable values
in consecutive states. The former is safer and more convenient for human-written
models, but the latter is more flexible, especially in the context of mechanically
generated models.

5.2 Post-Projection to SMV

We have implemented the post mapping on SMV models, in the form of a macro
library for M4, a generic macro-processor included in most UNIX distributions
[9]. The library provides macros supporting the two sides of the post trans-
formation: models and logic formulae. Our implementation currently supports
ARCTL, but adaptation to similar logics such as A-CTL would be straightfor-
ward.

The mapping of logic formulae is a straightforward application of the equa-
tions of Section 4. For example, using the macro definition

define(‘EU_A’,‘((($2) & EX E[($1) & ($2) U ($1) & ($3)]) | ($3))’)

Ea[p U q] can be written as EU_A(a,p,q) and is expanded to
(((p) & EX E[(a) & (p) U (a) & (q)]) | (q))

Since input variables are forbidden in SMV specifications, state variables have to
be used instead. It is up to the user to decide which (state) variables in the SMV
model represent action and state variables of the mixed model, and consistently
use them only in the appropriate parts of the ARCTL operator macros — this
is not enforced by the macro package.

The expansion produces SMV constraint-style transition declarations: transi-
tions are declared as TRANS <tcond>, where <tcond> is a transition condition
with sub-terms of the form next(<cond>) to refer to the post-state. We provide
a macro

define(‘TRANS_A’,‘TRANS next($1) -> ($2)’)

such that TRANS_A(a,t) defines a transition labeled by a and constrained by t,
and expands to TRANS next(a) -> (t). Again, the user must make sure that
the action and state parts (a and t) of TRANS_A(a,t) declarations contain only
his chosen action and state variables, respectively.
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5.3 Action Logics in SMV

We have extended NuSMV to support ARCTL formulae. We use NuSMV’s exist-
ing input variables as actions, in the sense that any valuation of input variables
correspond to a different action. In other words, the action set A is the cross-
product of the ranges of all input variables. Correspondingly, action formulae
correspond to conditions over these variables.

In particular, we modified the syntax of formulae accepted by NuSMV to
include ARCTL operators, as follows:

ctlexpr ::= . . . (existing CTL forms)∣∣ EAX ( simpleexpr ) ctlexpr
∣∣ EAG ( simpleexpr ) ctlexpr
∣∣ EA ( simpleexpr ) [ ctlexpr U ctlexpr ]
∣∣ . . . (others defined similarly)

where simpleexpr is a conditional expression, further restricted to contain only
input variables. For example, EA(a)[p U q] is the concrete syntax for Ea[pU q].

Here is an overview of the modifications that were performed on the NuSMV
code base to evaluate these new operators:

– Action formulae can readily be evaluated as BDDs, in the same way as
standard state formulae, without any code modification.

– We defined a new BDD function eax(A, S) which implements the eax func-
tion of Section 3.3 over BDD-encoded sets of actions and states (A, S). This
function is a fairly simple adaptation of the existing ex(S) function for CTL.
Technically, the function merges A and S into a (BDD-encoded) set of action-
state pairs.

– Similarly, we defined BDD functions eau(A, S, S′) and eag(A, S), implement-
ing functions eau and eag of Section 3.3 over BDDs, based on fix-point
computations using the function eax.

– These three BDD functions were used to compute the (BDD corresponding
to the) set of states satisfying any ARCTL formula, by providing a corre-
sponding evaluation function for each operator.

– Besides these core changes, support for the new operators had to be folded in
several other modules, including of course the SMV model parser and CTL
evaluation dispatch functions.

These modifications allow for the evaluation of ARCTL formulae, as illus-
trated in the example of Figure 1, involving two agents bob and alice who can
non-deterministically select, at each time step, whether to perform an increment
of their variable count or not. In this case, we have two Boolean input variables
alice.move and bob.move, there are four possible actions corresponding to pos-
sible valuations of these variables, and action formulae are conditions on these
variables. As illustrated at the end of the example, ARCTL formulae allow to
reason about the consequences of actions.
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MODULE agent

IVAR move : boolean;

VAR count : 0..10;

ASSIGN

init(count) := 0 ;

next(count) := case

move & count < 10: count + 1;

1 : count;

esac;

DEFINE win := (count=10);

MODULE main

VAR alice : agent;

VAR bob : agent;

SPEC !EAX (bob.move) bob.count = 0

SPEC AAX (bob.move & alice.move) (bob.count > 0 & alice.count > 0)

SPEC AAF (bob.move) bob.win

Fig. 1. NuSMV code with ARCTL specifications

Our implementation is at the prototype stage and still needs some improve-
ments. In particular, the generation of witness traces for unsatisfied specifications
is not yet supported for our new ARCTL operators.

Also, our implementation computes one monolithic BDD [[T ]](s, a, s′) cover-
ing all possible actions. In some cases, separate transition relations could be
computed for separate actions, potentially resulting in smaller BDDs and thus
better scalability. Let us assume a finite action set A = {a1, . . . , an} (typically,
the range of a unique input variable in the SMV model). Then for each ai ∈ A
we can define Tai(s, s′) = T (s, ai, s

′) and pre-compute the BDDs for each action
ai

[[Tai ]] = [[T ]][a := ai]

and we have
[[EαX φ]](s) = ∃s′.

∨

a|=α

[[Ta]](s, s′) ∧ [[φ]](s′)

6 Using ARCTL for Knowledge Logics

The material in this Section is presented in more details in a forthcoming com-
panion article [10].

CTLK is a logic to reason about time and knowledge in a system of agents.
Besides the temporal logic operators of CTL, CTLK offers epistemic (i.e. knowl-
edge) operators, such as KA φ, meaning that some agent A knows that φ holds.
Intuitively, A knows φ if φ holds in all the states that A deems possible. Under
certain hypotheses, this is formalized as an epistemic (equivalence) relation over
states ∼A that equates states that are indistinguishable by A.
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CTLK has been introduced in [2], extending the framework appearing in [11].
A model checking tool for CTLK and various examples have been presented
in [12], showing that temporal-epistemic properties may offer a more efficient
characterisation than temporal-only formulae.

6.1 From CTLK to ARTCL

The problem of model checking CTLK can be reduced to the problem of model
checking ARCTL, as follows. In this setting, each agent Agi is associated with
a set of “local” variables vi, so that s ∼Agi s′ ≡ (vi(s) = vi(s′)), where vi(s)
is the projection of s on vi. Given a CTLK model MK and a CTLK formula
φK , a MTS M = F (MK) and an ARCTL formula F (φK) can be defined such
that MK |= φK iff F (MK) |= F (φK). The MTS M includes two kind of action
atoms: an atom RUN associated to temporal transitions, and atoms Agi (one
for each agent) associated to each epistemic relation ∼Agi . These atoms are used
in the definition of two kinds of transitions of M, either temporal or epistemic.
F (φK) is generated as follows: standard CTL operators in φK are translated into
their ARCTL extensions restricted to RUN actions, and epistemic operators are
translated to ARCTL operators labelled with Agi. For instance

F (EX φ) = ERUNX F (φ)
F (KAgi φ) = AAgiX F (φ)

We have implemented this translation as an M4 macro package that allows to
write CTLK models and specifications, to be verified with the modified NuSMV
presented in Section 5.3.

6.2 Experimental Results

We have conducted some early experiments using action-based model checking
for verifying CTLK, in the context of analyzing diagnosability properties. Di-
agnosability is the ability of performing a diagnosis of a given system, knowing
which variables (or events) of the system can be observed. Considering these vari-
ables as the observations of an agent D (the Diagnoser), diagnosability properties
can be phrased as epistemic properties. For example, a fault condition faulty
can be detected if and only if the diagnoser always knows whether the system is
faulty or not:

AG(KD(faulty) ∨KD(¬faulty))

We have carried out experiments on a simple cascaded power distribution
model, illustrated in Figure 2, for various depths of the cascade. This models
features a power source, circuit breakers (CBs) and LEDs (as power sinks),
where the CBs can fail in different ways and only the commands applied to the
CBs and the LED states are observable. We have been able to verify a fairly
large model (240 variables, for a total state space of size ≈ 1070). Despite its
size, this model can be verified in less than 10 minutes thanks to the BDD-
based symbolic encodings used in NuSMV. Notice that the modification of the



Symbolic Model Checking of Logics with Actions 125

NuSMV code and the verification of epistemic properties using the reduction to
ARCTL do not affect the performance of NuSMV: the non-modified version of
SMV obtains similar results in the verification of temporal-only properties for
the CB example.

led1

source cb1

cb2

cb3

cb4

cb6

cb7

cb5

led4

led3

led2

Fig. 2. Sample circuit

7 Related Work

Several authors have already described symbolic model checking algorithms for
action-based logics, along very similar lines to what we describe here. In principle,
after [7] it is sufficient to have a core set of temporal eventualities expressed as
fixpoint formulae to provide the grounds for symbolic model checking.

– In [13,14], the authors present a variant of A-CTL with unless operators EW
and AW and slightly different semantics (and syntax). That logic is more
expressive than classic A-CTL. They give a fixpoint characterization using
extended operators EX[{α}φ∨{α′}φ′] and AX[{α}φ∨{α′}φ′], which slightly
extend our EαX and AαX and allow the increased expressivity, but otherwise
follows the classical approach used as a basis for CTL and ARCTL model-
checking. They have implemented their approach in the Efficient Symbolic
Tools (EST) package [15], which offers symbolic A-CTL model-checking for
a process-algebra language.

– [16] describe SAM, a symbolic model checker for μ-A-CTL, an extension
of A-CTL with fixpoint operators. SAM uses a BDD-based Boolean system
called BSP. SAM is part of the JACK toolset which uses the process algebra
CCS/Meije to describe models.

Compared to those two systems, the work presented here is at a more pre-
liminary stage but offers two significant contributions: firstly, it considers mixed
systems, reconciling the state-based and action-based schools of formal methods;
second, it is implemented in NuSMV, an open-source, feature-rich, efficient and
widely distributed system with an expressive modelling language.

In a related topic, [17] discuss the encoding of CCS-style process algebras as
BDDs. The authors envision that encoding as a way to enable efficient bisim-
ilarity checking, but action-based temporal logic could equally be applied. [18]
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brings this idea one level higher, by proposing a BDD encoding for any process-
algebraic language whose structural operational semantics follow a given pattern
(so-called Simple GSOS Systems).

Regarding the post reduction from mixed to state-based models and formu-
lae, a similar reduction from A-CTL to CTL (and more generally from A-CTL*
to CTL*) is already presented by Nicola and Vaandrager in [5]. That approach
creates additional intermediate states in the KS to represent actions, which com-
plicates the translation of formulae and would double the number of computation
steps when computing fixpoints for symbolic model checking. In contrast, our
post transformation multiplies the state space by the action space, but from a
symbolic model checking standpoint, the number of variables and the depth of
fixpoint iterations is unchanged.

8 Conclusions and Perspectives

Although symbolic model checking of action-based logics is well-understood in
principle and has been implemented in several places, it has so far focused on pure
action-based, process-algebra formalisms with a relatively limited distribution.
This paper presents a step towards making mixed state-based and action-based
reasoning capabilities more widely available, with two complementary contribu-
tions: at the theoretical level, a formulation of the model-checking problem for
mixed models and an associated mixed logic, called ARCTL, that provides a clean
generalization of CTL; at the practical level, two prototype implementations of
mixed-logic model-checking in the mainstream symbolic model-checker NuSMV.

The initial motivation for this work arose from a need to perform model check-
ing of logics with modalities for both the temporal evolution of the system and
the knowledge (or beliefs) of agents in the system. Under some assumptions,
this can be reduced to a mixed-logic model-checking problem. Our initial exper-
iments in checking the epistemic temporal logic CTLK with NuSMV based on
that reduction provided successful and encouraging results.

The work presented here can be extended in a number of ways:

– The treatment of internal (invisible) actions needs to be investigated. Essen-
tially, this amounts to considering weak variants of temporal operators that
ignore a distinguished τ action. This should not cause major technical issues,
as fixpoint characterizations for such operators are well-known (see e.g. [6]),
but the precise formalization and implementation need to be worked out.

– Fairness needs to be reconsidered. As we have seen in Section 3.4, the notion
of fair path used for CTL is not appropriate with finite traces. Instead,
action-based theories commonly define fairness in terms of not indefinitely
refusing enabled actions [19]. How this can be addressed in symbolic model
checking is a matter to be investigated.

– On the implementation side, support for generation of counter-examples
needs to be addressed, which should require minimal technical changes in
NuSMV. Partitioning the transition relation between a set of actions is a
more significant and more involved change that we would also like to address.
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– We are currently investigating the feasibility of bounded model checking
for action-based logics, which offers a very efficient technique for finding
counter-examples, but it is currently supported by NuSMV for the verifica-
tion of linear temporal logic (LTL) only.

– Support for other action-based logics such as A-CTL could easily be added,
either as additional macro packages or as native extensions of SMV. Game-
theoretic logics such as ATL [20] would be a very valuable addition but would
require a deeper analysis and more involved changes to NuSMV.

A more thorough experimental assessment of the current prototype and its
future extensions is also desirable, but, as mentioned in Section 6.2 the first
results obtained from the CTLK application are quite encouraging.
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Abstract. To increase positive expectations in the outcome of open multiagent
systems, institutions have been put forward to regulate agents’ behaviour. To
model and to verify such institutions, we propose to adopt the notion of status
function, which provides for a unified approach to ontological and deontic as-
pects regulated by an institution. Also, to enhance the development of functional
and rational institutions, we propose a language amenable to model checking to
describe them and their properties. Finally, we present our tool and an evaluation
of our approach.

1 Introduction

To increase positive expectations in the outcome of systems composed by autonomous
agents, norms have been put forward to regulate and to make more predictable agents’
behaviour [20,8,9,24,5]. While in [20] norms (also named social laws) are assumed to
be respected by agents because they are designed and encoded by a single organization,
in [8,9,24,5] norms are defined by institutions and enforced by organizations to regulate
open multiagent systems, where it is unrealistic to expect that agents implemented by
different parties with interests in conflict will always behave according to a system of
norms.

Our research is motivated on one hand by the fact that deontic aspects and institu-
tional facts need a unified treatment, while so far they have been regarded separately
[8,5,9,10,22]. Following [23], in [27] we have proposed to model institutions in terms
of a single concept, that is, status function, which provides for a unified approach to on-
tological and deontic aspects regulated by an institution. Roughly speaking, status func-
tions are positions imposed on agents to perform certain actions (institutional actions),
which cannot be executed without the recognition of their effects by a community of
agents (see [27] for more details). In fact, the effects of such actions essentially consist
in the imposition or revocation of other status functions, which may confer to agents
new authorizations or obligations to perform other institutional actions. For instance,
in an English auction, when the auctioneer declares a new current price, participants
are authorized only to make higher bids. For this reason, we think that our approach
better clarify the interdependence existing among agents’ deontic positions (authoriza-
tions, obligations, etc.) and the ontology of the context in which agents interact, while
in [8,5,9,10,22] such relation is ignored.

� Supported by Swiss National Science Foundation project 200020-109525, “Artificial Institu-
tions: specification and verification of open distributed interaction frameworks.”

S. Edelkamp and A. Lomuscio (Eds.): MoChart IV, LNAI 4428, pp. 129–145, 2007.
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On the other hand, our research is motivated by the lack of formal support for the
verification of institutions. For instance, as observed in [25], certain aspects of the lan-
guage proposed in [8] to model institutions lack of a formal semantics. For example,
the meaning of labels used in [8] “is not clear from the notation only” [25]. This fact
has negatively influenced the application of automated techniques to verify such for-
malism: in [4] and [13] the authors propose two frameworks to model check electronic
institutions, but, due to the aforementioned limitations, only properties regarding their
syntactic structure can be defined and verified. As a consequence, ISLANDER [7], a
tool for modelling institutions according to the formalism introduced in [8], only checks
syntactical aspects and does not integrate any support for the automatic verification of
electronic institutions. Also, in [22], where agent societies are described with a formal-
ism inspired by the Event-Calculus [15], the authors must rely on “systematic runs”
to guarantee the correctness of their protocol. Given that institutions are introduced to
increase the reliability of agents interactions by ensuring that agents have at their dis-
posal all the needed powers to fulfill their objectives and that they will not be subject
to contradictory or undesired norms, the aid of automated techniques it is necessary to
foresee all possible evolutions and states in which an institution may evolve.

To allow designers to describe institutions in terms of status functions and to of-
fer them the support of a tool that provides for their automatic verification, in [27]
we have introduced FIEVeL (Functions for Institutionalized Environ-ments Verification
Language), which is an institution definition language amenable to model checking [2].
In this paper we extend FIEVeL to allow a designer to express desirable properties that
should be satisfied by his or her models in terms of the concepts defined in our meta-
model [27], ignoring the actual translation of FIEVeL into the input language of the
model checker.

The remainder of this paper is structured as follows. In Section 2 we briefly resume
the main legal and philosophical concepts that we perceive as essential to specify insti-
tutions. In particular, since institutions have been applied to define protocols [9,22], we
will ground our discussion with examples taken by a widely used interaction protocol,
the English auction. Section 3 introduces certain critical aspects of the translation of
FIEVeL models into Promela, the input language of SPIN [12]. In Section 4 we present
how we have extended FIEVeL to specify domain-dependent properties, while Section 5
discusses an initial library of domain-independent properties. A key aspect of domain-
dependent properties is that they can be automatically translated, while an important
aspect of domain-independent properties is that they can be automatically generated by
our tool, which is briefly presented and evaluated in Section 6. Finally, in Section 7 we
provide a comparison of our approach with related works.

2 Modelling Institutions

The key concept that characterizes our approach to the description of an institution is
the notion of agent status function, that is, a status imposed on an agent and recognized
as existing by a set of agents [23]. Typical examples of status functions are not only the
concept of auctioneer or winner of an auction, but also being the owner of a good, being
the husband or the wife of somebody. Although there exist several similarities among
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the concepts of status function and role as it has been discussed in the literature [17],
we prefer to use the term status function because it better represents the fact that we
are concerned with statuses assigned to agents to perform several functions and whose
existence depends on those agents that recognize them as existing.

Status functions are defined as possibly empty aggregates of deontic positions that
can be expressed in terms of two main concepts, authorizations (also named institution-
alized power [14,22]) and obligations. An obligation is characterized by certain expres-
sions which are used to specify conditional obligations and when an obligation should
be considered fulfilled or violated (more details can be found in [27]). An obligation is
created because a status function is imposed, changes its state when its conditions are
satisfied, and eventually reaches a final state (inactive) either because its expressions
are evaluated to true or because it is associated to a revoked status function. In particu-
lar, when an obligation reaches the inactive state, we consider that it has been fulfilled
if its fulfillment expression is satisfied, otherwise if the violation expression is satisfied
we say that the agent has violated it. Obligations can be also used to express prohi-
bitions by specifying suitable violation expressions, while we do not define a specific
construct to explicitly represent the fact that an agent is permitted to perform an action
as in [5,10,22]. Instead, as in [9] we consider that every action, if it is not prohibited, is
also permitted.

Interdependent status functions are declared within institutional entities which en-
force on a group of status functions a set of constraints (e.g. an auctioneer cannot be
also a participant). Moreover, institutional entities define cardinality constraints, like
“an auction is composed by an auctioneer and a set of participants”.

FIEVeL allows to model two kinds of events, base-level events and institutional
events. There exists an ontological difference among them: while the former exist be-
cause they correspond to certain physical changes or are relative to lower level institu-
tions, like time events and message-exchange events, the latter exist because they are
recognized as existing by a community of agents. Therefore, institutional events are not
directly produced by the environment or by an agent thanks to its own capabilities, be-
cause their effects need to be recognized by a set of agents. Instead, institutional events
happen because agents accept that when certain base-level events occur, if certain con-
textual conditions are satisfied, they count as institutional events. As it can be noticed in
Figure 1, FIEVeL models institutional events by describing their preconditions in terms
of the existence or absence of certain status functions, while their effects are expressed
by assigning (or revoking) several status functions.

In [27] we extended the treatment of the count-as relation as it was presented in [9]
by describing what kind of contextual conditions are relevant to model that a base-level
event counts as an institutional event. In particular, we single out the following condi-
tions: (i) there must exist a convention binding the base-level event to the institutional
event; (ii) a precondition, expressed in terms of the existence or absence of certain sta-
tus functions, must be satisfied; (iii) in the case of institutional actions, the agent must
be authorized to perform the institutional action. If all these conditions are satisfied, a
base-level event counts as an institutional event and its effects take place, which means
that certain status functions will be assigned or revoked.
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FIEVeL models status functions, base-level events, and institutional events as complex
types defined in terms of certain basic types, which can be specified as subsets of built-in
basic types or by enumerating their elements (see Figure 1). FIEVeL defines few built-in
basic types, like integers (int), agent identifiers (AID), and objects identifiers (OID).

Figure 1 reports a few fragments of our specification of the English Auction insti-
tution, showing that an auctioneer that has opened an auction (represented by INSES-
SION status function) is not only authorized to close the auction if certain conditions

basic-types:
priceD subtype-of int;
...

base-events :
message openRound();

...
institution EnglishAuctionInstitution {
institutional-entity englishAuction {
...
[0,ALL] status-function INSESSION() {
authorizations:
...
newRound n <- exists[>=2] p in PARTICIPANT [true];

deontic-specification:
obligation(done(open,subject),

(exists [<2] x in PARTICIPANT [true] or
done(newRound,subject)),activation-time>1);

...
}// INSESSION
...

constraints:
AUCTIONEER disjoint PARTICIPANT;

}// entity
conventions:

exch-Msg(openRound ()) =c=> newRound();
time() =c=> endRound();
...

institutional-events:
...
institutional-action newRound():
pre: ((not exists x in INROUND [true] and

not exists o in OFFERED[true])
and not exists x in ENDAUCTION [true]) ;

eff: p in PARTICIPANT -X->
assign(p.subject, INROUND())[true],

a in AUCTIONEER -X->
assign(a.subject, INROUND()[true];

...
}// institution

...
model-definition:
basic-domains:
AID={aid 0,aid 1,aid 2};
...

initial-state:
assign(aid 0,AUCTIONEER());
...

Fig. 1. Fragments of the English Auction institution
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hold, but thereafter it is also obliged to do so before the next time instant has elapsed.
An auctioneer is also authorized to open a new round if there are at least two partici-
pants by performing the institutional action newRound, which is conventionally bound
to the exchange of a message of type openRound and, if the previous round has been
closed with at least two offers, a new round is open and participants can make their bids.

3 Institutional Models and Computational Models

Every institution described with FIEVeL corresponds to an ideal transition system char-
acterized by a many sorted first-order signature [18] where every transition represents
all institutional effects (institutional events, fulfillment of obligations, etc) associated
with a base-level event. Intuitively, every transition is caused by a base-level event,
which may also count-as an institutional event if certain conditions are met, and, as a
consequence, institutional reality is modified by the imposition and revocation of certain
status functions. Also, since expressions that regulate the evolution of agents’ obliga-
tions refer to both events and institutional states, certain obligations may update their
state. Ideally, all these changes correspond to a single transition of the base-level and
institutional transition system.

Actually, the generation of such transition system is not only computationally expen-
sive, but also its encoding into Promela, the input language of the SPIN model checker
[12], would also lead to a huge number of code lines. In fact, due to several limitations of
SPIN, we should generate a transition for each possible combination of base-level events,
institutional-events, and obligation-state changes. For this reason, instead of calculating
the ideal transition system, we prefer to derive a computational transition system, such
that each transition partially represents the institutional effects of an event, so that sum-
ming the effects of a sequence of transitions we can reach the same institutional state.

To demonstrate that we can build a computational transition system which simulates
the ideal system, that is, satisfies the same properties, let M be a Kripke structure over a
set AP of atomic propositions such that V is a valuation function associating a value in
{0, 1} at each atomic proposition p in AP for each state, Π is the set of all paths and Π0

represents the set of all initialized paths in M . In the sequel we write πk for the k-th state
of path π = s0, s1, s2, . . ., πk for the suffix of π starting at state πk, that is, the sequence
sk, sk+1, sk+2, . . ., and finally M, Π0 |= ϕ to mean that for each π ∈ Π0, M, π |= ϕ.

Given two Kripke structures M and M̂ , we define a relation Zinst ⊆ Π × Π̂ such
that (π, π̂) ∈ Zinst if and only if for each proposition p ∈ AP :

1. V (π0, p) = V̂ (π̂0, p);
2. V̂ (π̂0, inst) = 1;
3. there exists a k > 1 such that:

(a) V (π1, p) = V̂ (π̂k, p);
(b) for every 0 < r < k

i. V (π0, p) = V̂ (π̂r, p) ;
ii. V̂ (π̂r , inst) = 0;

(c) (π1, π̂k) ∈ Z .

where inst is an atomic proposition belonging to ÂP but which does not appear in AP .
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Intuitively, we can imagine building a path π̂ by taking path π, adding a set of atomic
propositions which do not belong to AP , by marking every state of π such that the
valuation function of inst is true, and finally by inserting between two consecutive
states (πi, πi+1) a new set of intermediate states which are characterized by the same
valuation function of state πi with respect to propositions AP and which valuate the
proposition inst to false. Path π̂ is therefore emulating the behavior of path π by simu-
lating each transition on path π with a finite sequence of transitions, such that it keeps
unchanged the truth values of common atomic propositions until it changes them in a
single step.

Zinst has been introduced to guarantee that an institution described with FIEVeL can
be verified with SPIN and that every property regarding the institutional state holding
in the ideal institution also holds in the Promela model, and vice versa. While in [27]
we presented a relation which preserves all temporal properties of the ideal system
which do not contain the next temporal operator, Zinst preserves all temporal formulas
which are satisfied in the institutional system. To obtain such result, we first introduce
a transformation τ defined as follows:

τ [p] = p
τ [¬χ] = ¬τ [χ]
τ [χ ∧ ψ] = τ [χ] ∧ τ [ψ]
τ [Xχ] = instU(¬inst ∧ (¬inst)U(inst ∧ τ [χ]))
τ [χUψ] = (inst → τ [χ])U(inst ∧ τ [ψ])

where p represents any atomic proposition in AP , and χ and ψ represent any formula.
It can be demonstrated 1 the following Lemma:

Lemma 1. If (π, π̂) ∈ Zinst and ϕ is a temporal formula composed by atomic propo-
sitions belonging to AP , then M, π |= ϕ if and only if M̂, π̂ |= τ [ϕ].

From Lemma 1 it follows the subsequent theorem:

Theorem 1. If for each π ∈ Π0 there exists a π̂ ∈ Π̂0 such that (π, π̂) ∈ Zinst, and
for each π̂ ∈ Π̂0 there exists a π ∈ Π0 such that (π, π̂) ∈ Zinst, for each temporal
formula ϕ composed by atomic propositions belonging to AP , M, Π0 |= ϕ if and only
if M̂, Π̂0 |= τ [ϕ].

This result means that given an ideal transition system which corresponds to a FIEVeL
model, we can build a computational transition system which preserves all temporal
properties of the ideal system.

Before briefly introducing how we proceed to translate FIEVeL institutions into
Promela models, it is worth discussing how we model time. FIEVeL regards time as-
pects in two distinct ways: (i) as in classical temporal logic, to define qualitative prop-
erties (e.g. it is always the case that an auctioneer cannot win an auction), and (ii) as in
RTTL [21] to express quantitative properties (e.g. the auctioneer must open the auction
before two minutes since now). Two consecutive time events ti and ti+1 may be sepa-
rated by a sequence (possible empty) of other base level events, which are assumed to

1 For proofs of Lemma 1 and Theorem 1 refer to [26].
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occur at time ti. Hence the institutional state may change due, for instance, to message-
exchange events even if the time does not change. In principle, there may be an infinite
number of time ticks, while in [27] we considered only finite time intervals. The main
drawback of the approach discussed in [27] is that certain formulas may (not) hold in a
system because they refer to time instants that have not been considered by the model
checker [19].

To solve this problem, we have slightly changed FIEVeL syntax by allowing only
time expressions which assume a truth value that will not longer change after a fixed
number of clock ticks have elapsed from the occurrence of a certain event. As a conse-
quence, we have also changed our encoding of time references defined by an institution,
which are substituted by suitable counters. In doing so, we are simulating an infinite
number of time instants with a finite structure that is verifiable by a model checker.
Therefore, we can ensure that a property holds in a Promela model if and only if it
holds in the institution which is characterized by an infinite number of time tick. As a
consequence, the number of possible events that the model checker should consider, and
how they can be interleaved, has been increased, which means that we have increased
the memory and time required to verify an institution.

To model check FIEVeL models we have defined an automatic translation of FIEVeL
into Promela. A Promela model is composed by a set of processes and global variables
that can be described by defining new process types and record structures. Essentially
a Promela process is constituted by a set of statements (also named guarded commands
in [6]), which can be simple statements, like assignments, or compound statements, like
selection (if) and repetition (do). Each statement is characterized by an enabling con-
dition and a postcondition. Promela imposes severe restrictions on what can be specified
in a precondition, therefore, to overcome such limitations and to increase the expres-
siveness of FIEVeL without producing an huge number of intermediate states, we chose
to use embedded C code to evaluate preconditions of transitions and to compute reach-
able states. The SPIN model checker adopts an interleaving semantics, which means
that when several processes have executable statements, it randomly chooses one of
them and executes it. When all enabling conditions are evaluated to false, two special
preconditions (also named guards) timeout and else, are evaluated to true. In par-
ticular, else is enabled only if all transitions at the process level cannot be executed,
while timeout is evaluated to true only if no process has an enabled transition. In this
brief overview we have just introduced a few concepts that are necessary for the sake
of the present discussion, while further details can be found in [12].

When we translate FIEVeL, status functions, institutional entities, obligations, base
events, and institutional events are encoded as a set of type definitions, which are then
used to declare two set of variables, one representing the current institutional state
and another which is exploited to generate the next institutional state. Each institution
is then translated into a new process definition according to the pattern represented
in Figure 2. For sake of simplicity, we can imagine that every process representing
an institution consists of a main loop which is enabled whenever a new base event is
generated and contains an inner loop where each guard represents an institutional event
or an obligation-state transition. Actually, to further reduce the number of intermediate
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proctype institutionProc(int id) {
do
:: (nextEvent.analyzed[id]==FALSE)->
do
:: ((condition inst event x1 || condition inst event x2) &&

!(effects x)) ->
apply effects(next event);

...
:: ((next obligation.state==inactive) &&

(start obligation && obligation.state==inactive)->
next obligation.state=active;

::else -> break;
od
nextEvent.analyzed[id]=TRUE;

od
}

...

proctype eventGenerator(){
do
:: timeout ->
curr state=next state; inst=true;
inst=false; updateConditions();
if
:: true -> next event = time event;
:: condition event1 -> next event = event1;
:: condition event2 -> next event = event2;
...
fi

od
}

Fig. 2. Translation pattern for processes representing institutions and the structure of an event-
Generator process

transitions and to generate a more compact Promela code, our current implementation
introduces several improvements that have not been reported in Figure 2.

As discussed above, institutional states evolve because base-level events happen and
they count-as institutional events. To model base-level events, we define a new process,
named eventGenerator, which generates actions and events as if they were produced
by agents or the environment. Agents therefore are not modelled as processes as in
[28], while we reduce them as parameters of base-level events. This choice is motivated
by the fact that in open multiagent systems agents’ internal states are not accessible
and therefore we must assume an external point of view. The process structures pre-
sented in Figure 2 ensures that the eventGenerator is activated only when all institution
instances have generated the next institutional state by considering all possible institu-
tional transitions (counts-as, institutional-event effects, and obligation transitions), such
that current state variables can be updated with the new calculated values. Therefore,
when an eventGenerator is activated, we consider reached the next institutional state
and thereafter we start to compute the following institutional state by choosing the next
base-level event. In doing so, events are modelled as if they were perceived and ana-
lyzed by a centralized institution manager, which manages the state of the system and
updates it when an event occurs. Although such an assumption would be unrealistic in
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the implementation of a distributed system, we introduce it to reduce the complexity
of the verified model. Also, it can be noticed that several prototypes of institutions, for
example [10], consider a single centralized component which makes the institutional
state evolve.

Finally we declare an init process to generate the initial state. Due to values assigned
by default to variables that compose complex types, we cannot always build a com-
putational path π̂ whose valuation function at the initial state simulates the valuation
function of the institutional path π at its initial state such that (π, π̂) ∈ Zinst. To over-
come this problem, we consider a computational path such that: (i) V (inst, π̂i) = 0
for each i < 2 and (ii) (π, π̂2) ∈ Zinst. Therefore we obtain that π |= ϕ if and only if
π̂2 |= τ [ϕ], which corresponds to check if π̂ |= ¬instU(inst ∧ τ [ϕ]).

4 Domain-Dependent Properties

Domain-dependent properties stem from peculiar features of the specified institution
and regard its functionality: for instance, we may want to check if it is possible that a
participant is declared to be the winner of an auction. In specifying domain-dependent
properties we must take into account two different aspects: (i) since we are considering
open multiagent systems, agents may violate norms of institutions and (ii) agents may
be permitted and not obliged to perform certain actions (see Section 2). For instance, in
our specification of the English auction, participants are permitted to make bids and an
agent can be declared to be the winner only it has offered the highest price. Therefore,
certain executions end without a winner because none of the agents has made a bid,
while if the auctioneer respects its obligations, it is always the case that if there is at
least an offer, there will be a winner.

As a consequence, agents’ violations and permissions led us to consider not only va-
lidity of LTL formulae, but also their satisfiability. In the sequel we will write M |=A ϕ
to mean that ϕ is valid in M and M |=E ϕ to express that ϕ is satisfiable in M . The
set of LTL formulae can be seen as a subset of CTL∗ formulae of the form Af , where
A is the universal quantifier over paths and f is a formula composed by atomic propo-
sitions, boolean operators, and temporal operators [2]. For the relation existing among
the universal and the existential quantifiers, we can define satisfiability of formula ϕ as
follows:

M |=E ϕ ≡ M �A ¬ϕ

Therefore, since SPIN is able to check only validity of LTL formulae, to verify if
M |=E ϕ, we check whether¬ϕ is a valid formula, and if the model checker generates a
counterexample we assume that ϕ is satisfiable. Despite our interest for the existence of
certain paths, we still prefer LTL to CTL because it is simpler and it helps the designer
to focus his or her attention on single runs of the system.

Domain-dependent properties can be specified in FIEVeL by combining temporal
operators with expressions that refer to institutional states (expressed in terms of sta-
tus functions) and events. Despite FIEVeL expressions correspond to plain LTL for-
mulae, we think that it is worth specifying properties of institutions with FIEVeL for
three main reasons: i) a FIEVeL formula represents an abbreviated form for a long and
complex LTL formula, ii) FIEVeL guarantees syntactic type checking of formulae, and
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iii) designers can reason in terms of institutional concepts ignoring their translation into
Promela models. Moreover, institutions describe rules that typically are independent
of the number of agents, objects, etc. involved in the interaction, which can be natu-
rally expressed in FIEVeL by using quantification over sorts. Temporal operators and
FIEVeL expressions can be combined because we assume that domains are fixed at all
states of our system. For the same reason, we admit that domain-dependent properties
can be externally quantified with respect to basic domains (see Section 2). For instance,
we may want to verify that only an auctioneer can open an auction or that a partici-
pant may eventually become the winner. These properties are formalized in FIEVeL as
follows:

|=A forall X in AID G(done(open,X)-> exists A in AUCTIONEER

[A.subject= X]); (1)

|=E exists X in AID ( exists P in PARTICIPANT [P.subject=X]

-> F exists W in CURWINNER [W.subject= X]); (2)

While properties that hold in paths where agents may violate norms are useful to
evaluate worst cases and to check whether an institution is robust, the functionality of an
institution can be better evaluated by assuming that all agents are compliant (i.e., behave
according to the norms of the system). For this reason, domain-dependent properties are
specified in two different sections, one where agents are assumed to be compliant and
another where all possible paths are considered.

To express agents compliance, we introduce a new proposition, violation, which is
set to true whenever an obligation is violated. Therefore, illegal states where at least
an obligation has been violated evaluates violation to true: in doing so, our treatment
of agents violations is somehow similar to the approach presented in [16] and [24].
Therefore, to check whether |=E ϕ under the hypothesis of agent compliance we verify
whether:

|=E G¬violation ∧ ϕ

while under the hypothesis of agent compliance |=A ϕ is checked as follows:

|=A G¬violation → ϕ and |=E G¬violation ∧ ϕ

For example, as mentioned above, assuming that the auctioneer is compliant with
its obligations, we would expect that if a participant makes a bid, the auctioneer will
declare the winner of that round, which can be expressed as follows:

|=A G(happens(offer)->F happens(currentWinner)); (3)

As we can see in Figure 3, property (3) holds only if we assume agents compliance.
Verifying domain-dependent properties by assuming that agents will conform to the
norms of the system not only allows us to check the functionality of an institution, but
also considerably speeds up the verification process (see Table 1).

We think that the availability of a tool for the automatic verification of institutions is
especially useful when a designer wants to change an existing institution by introducing
new institutional actions or norms. By defining new possibilities of actions or limiting
existing ones, certain properties may cease to hold, compromising the functionality
of an institution. In an earlier version of our specification of the English auction, we
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Fig. 3. The report generated by our tool during the verification of domain-dependent properties
presented in Section 4

introduced the participant status function as an entry point for agents to participate to
an auction. In that specification, among others, we checked, under the hypothesis of
agents compliance, if every opened auction would be eventually closed, as stated by the
following property:

|=A G(happens(open) -> F happens(close)); (4)

After that, we authorized participants to leave the auction during the time comprised
among two consecutive rounds. In our first attempt, property (4) did not loger hold,
since the auctioneer was authorized to declare a new round only if there were at least two
agents (see Figure 1), while it was authorized to close the auction in such circumstances
but was not obliged to do so. We solve this problem by introducing a new obligation for
the auctioneer, and now property (4) is valid in our specification (see Figure 3).

5 Domain-Independent Properties

Domain-independent properties represent general desirable properties of institutions
which stem from our metamodel (see [27]). For instance, a sound specification should
be characterized by the fact that every institutional event must eventually happen in
at least an execution where no violations occur. On the contrary, it would mean that
either the preconditions of the institutional event are never met, that the designer has not
defined the necessary authorizations, or that norms of the institution forbid agents from
executing it whenever they are authorized. In any case, it is important that the designer
becomes aware of this fact, and consider how to modify the institution, otherwise the
definition of such institutional event would be useless.

A second important aspect that distinguishes domain-independent properties from
domain dependent properties is that the former can be automatically generated by stati-
cally analyzing a specification of an institution, without considering the actual purposes
of the designer when he or she has specified it. For instance, we can check whether an
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event of type newRound may occur by specifying the following property as a domain
dependent property holding under the hypothesis of agent compliance:

|=E G¬violation ∧ Fhappens(newRound)

The main point is that an event of type newRound is just an intermediate step, al-
though a necessary one, to reach a state in which an agent wins the auction and the
product is sold.

Finally, domain-independent properties are defined to guarantee the rationality of an
institution with respect to the intended semantics of the concepts defined by our meta-
model. For example, norms are introduced in open multiagent systems to constrain
possible agents’ behaviour, and therefore it must be the case that each norm can be
eventually activated. If we assume that agents are autonomous, it should be possible for
an agent both to violate and fulfill its obligations (and prohibitions), which means that
norms regulate aspects of (social) reality which are contingent. It would be irrational to
define an obligation characterized by an expression that makes it always fulfilled (or vi-
olated) independently of agent actions. Moreover, it should be the case that once a norm
is activated, it ought to eventually reach a final state (fulfilled, violated, revoked), which
guarantees that the whole life-cycle of a norm is limited and regulated only by the insti-
tution that defines it. Assuming that propositions activatedi, violatedi, and fulfilledi

represent the fact that the i-th obligation associated to the j-th status function are re-
spectively activated, fulfilled, or violated, and that imposed sfj and revoked sfj are
true when the j-th status function is assigned or revoked, we can formalize the proper-
ties mentioned above as follows:

1. |=A G((imposed sfj∧(activatedi) → F(violatedi∨fulfilledi∨revoked sfj))
2. |=E G(imposed sfj → Factivatedi)
3. |=E G(imposed sfj → Ffulfilledi)
4. |=E G(imposed sfj → Fviolatedi)

At the moment, these properties cannot be expressed in FIEVeL. Instead, they are
generated by defining new constants in the Promela model which refer to the state of
each obligation. We are considering how to extend FIEVeL such that a specification
may refer to the current state of agents’ obligations, which is a fundamental step to
specify recovery policies and sanctions for the management of violations.

We think that the definition of a library of domain-independent properties, their au-
tomatic generation and verification is an important aspect of the development of sound
institutions, since they regard the rationality of an institution and reflect certain aspects
that may be critical in the development of an institution. Also, if we consider that a
specification may be composed by many institutional events and norms, the support
provided by a tool spares the designer the tedious task of hand coding them. Finally,
their automatic definition allows the designer to focus his or her attention on the most
relevant aspects of an institution to comply with his or her objectives.

6 The Verification Framework

To check with our tool whether an institution satisfies a set of domain-dependent proper-
ties, the designer must provide a model definition by describing which elements
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compose each basic domain (see Section 2) and the initial state of the system, defined
in terms of which status functions are imposed on agents at the initial state. Moreover,
the user can select which domain-independent properties must be generated to guaran-
tee the soundness of the specification. At the moment, we have fully implemented only
the verification of properties described in Section 5, although new domain-independent
properties can be easily defined and incorporated into our tool thanks to its modular
architecture.

Given an institution, a model description, a set of domain dependent properties spec-
ified by the designer, and a set of soundness aspects that should be checked, the tool
automatically verifies the specification and creates a report of the verification activity
as shown in Figure 3, which shows results obtained by checking most of the properties
mentioned in this paper.

When a property does not hold, the model checker generates a counterexample
[2,12], which is used to extract the sequence of base-level events that characterize that
execution. To better interpret why a trace violates a property, we have started to imple-
ment a translation of FIEVeL into a set of Java classes, which should help the designer
to reason in terms of the abstractions provided by FIEVeL and to hide the details related
with Promela and its syntax. Also, such classes represent a fist step to develop a sim-
ulator of institutions, which can help the designer to test his or her own specifications
and to understand how they will evolve by interactively determining events that will be
processed by the institution.

To provide the reader with a feeling of the computational costs of our approach, we
report results obtained during the verification of property (1) presented in Section 4 on
a desktop PC with installed Windows and equipped with a pentium 3.0 GHz and 0.5 GB
of RAM. Table 1 reports our experiments, where “*” represents the fact that the veri-
fication process requires more than 500 seconds and therefore it has been interrupted.
Analyzing results showed in Table 1, we can observe that by increasing the size of do-
mains representing agents and prices we obtain a very fast growth of time and memory
required to verify such property. This is essentially due to the fact that the number of
agents and prices determines the number of possible events that can be interleaved with
time events. Also, in our formalization of the English auction we keep trace of the or-
der in which agents make their bids, so that the auctioneer is able to declare a current
winner even if two agents have offered the same price during a round (the first agent
that has bid the highest price is declared to be the current winner ). Clearly, this fact
contributes to increasing the number of possible paths that the model checker has to
consider, and hence the amount of required memory and time.

Despite that, we consider our results interesting, considered the complexity of the
specification and compared with our experience in the verification of systems specified
in Promela. Instead, we are not able to offer to the reader any comparison with results
obtained by related works, because most of them do not report any experimental result
[13,28,24] or they mention results related with very simple properties [4]. In every case,
Table 1 clearly indicates that our approach is able to cope only with small domains. In
fact, performances rapidly decay with the growth of the size of the model due to the
number of variables that concur to represent the state of the system and due to embedded
code used to compute events preconditions and propositions of LTL formulas. Several
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Table 1. Time and memory required to verify Property (1) of Section 4. Results are reported
showing the size of the considered models and if they have been obtained assuming agent com-
pliance.

Agents Prices Memory (MB)
agent compliance

Time (sec) agent
compliance

Memory (MB) Time (sec)

3 1 11.164 0.18 61.962 0.93
3 3 12.342 6.17 107.826 74.75
3 5 52.093 42.14 * *
3 7 155.772 170.49 * *
4 1 12.867 0.26 67.81 1.29
4 3 13.162 16.06 116.841 198.10
4 5 58.65 128.34 * *
4 7 179.131 499.59 * *

techniques have been proposed in the literature to solve these problems, and we think
that the most promising for the verification of institutions are predicate abstraction [11]
and symbolic representation [3] of institutional transitions.

7 Discussion and Conclusions

In this paper we have presented a framework for the definition and verification of in-
stitutions. The main advantage of our approach consists in the definition of a language
that allows a designer to specify institutions and their desired properties in terms of a set
of legal and philosophical concepts, and to automatically translate them into the input
language of a model checker. Although in this paper we have exemplified our approach
with a well known protocol, we expect that our framework is suitable for the specifi-
cation and verification of systems where normative constraints and authorizations are
generated by different sources and do not specify a precise sequence of messages and
events. In presence of a collection of deontic positions that come from different sources,
it is important to check that certain properties hold, to guarantee that agents and their
designers can fulfill their objectives.

A few attempts have been previously carried out to apply model checking to verify
institutions. [13] and [4] developed techniques to translate certain aspects of electronic
institutions [8] into the input languages of SPIN or NuSMV [1]. Roughly speaking,
the language presented in [8] describes institutions as composed by protocols, defined
as finite automata, and a systems of norms, which may also regulate the execution of
protocols by prohibiting agents from exchanging certain messages. [13] and [4] fo-
cus their attention only on properties of finite automata (e.g. “it is always possible to
reach a final state”), while they do not take into account normative rules, that is, norms
that model obligations agents get as a consequence of previous actions [8]. Instead, in
our approach the attention is essentially focused on verifying properties of institutional
states, described in terms of status functions, which are intrinsically related with the
norms of the system. Moreover, in [13] each transition of the automata is interpreted an
obligation, while according to [8] transitions represent agents’ permissions. Therefore,
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it may occur that properties verified by the model checker actually do not hold in the
original model and vice versa.

In [5,22] the authors distinguish among institutional domain facts and normative
facts (obligations, institutionalized power, and permissions), while in our approach we
proposed a unified view of institutional domain and normative facts. Indeed, we claim
that institutional facts are such only because they imply new normative facts for the
interacting agents, which also represents a significant difference with respect to our
previous attempts to model institutional reality [9].

In the literature only agent actions have been considered relevant to describe insti-
tutions [5,9,22,24], and the attention has been focused on a single action type, namely
the act of exchanging a message [8]. The importance of time events has been neglected
[8,24], while not only time events are important for the management of obligations, but
also they can count as institutional events (see Figure 1). For instance, in most cultures
the 18th birthday imposes new status functions on a person.

As we have discussed in Section 6, we are considering how to improve the perfor-
mance of the verification process by applying predicate abstractions [11]. In particular,
we think that the approach presented in [3], where SAT solvers-techniques have been
proposed to increase the efficiency of the abstraction process, could be applied both to
reduce the size of the state space and to obtain institutional paths starting from compu-
tational paths by symbolically representing institutional transitions.

Acknowledgments. The author would like to thank his Ph.D. advisor, Marco Colom-
betti, for fruitful discussions and criticisms about the contents presented in this paper.
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Abstract. In this paper we show a novel method for modelling be-
haviours of security protocols using networks of communicating automata
in order to verify them with SAT-based bounded model checking. These
automata correspond to executions of the participants as well as to their
knowledge about letters. Given a bounded number of sessions, we can
verify both correctness or incorrectness of a security protocol proving
either reachability or unreachability of an undesired state. We exemplify
all our notions on the Needham Schroeder Public Key Authentication
Protocol (NSPK) and show experimental results for checking authenti-
cation using the verification tool VerICS.

Keywords: security protocols, model checking, authentication.

1 Introduction

Security protocols define the rules of exchanging messages between the parties
in order to establish a secure communication channel between them. Similarly to
communicating protocols there are several approaches to verification of security
protocols. These protocols are usually verified using deductive methods (e.g.,
theorem proving) or algorithmic ones. Deductive methods have been exploited
in many verification systems like: Isabelle [2], Murφ [26], TAPS [9], PVS [13],
and NRL [25]. Algorithmic approaches include mainly methods based on model
checking, which have been an object of an intensive research for several years in
both academic and commercial institutions.

Intuitively, model checking of a security protocol consists in checking whether
a model of the protocol accepts an execution (or contains a reachable state) that
is representing an attack on the protocol. Comparing to standard model check-
ing methods for communicating protocols or for distributed systems, the main
difficulty is caused by the need to model both the intruder who is responsible
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for generating attacks as well as changes of knowledge (about keys, nonces, etc.)
of the participants. Typically, a model is constructed as a product of processes
representing the participants and the intruder.

Properties expressing correctness of security protocols are usually formulated
as reachability properties or in linear (branching) time temporal logic. Following
early achievements in model checking of cryptographic protocols by the teams
of E. Clarke [8], C. Meadows [25], G. Lowe [23], or D. Bolignano [4], over the
last five years the state-of-the-art verification system AVISPA [1] has been de-
signed and implemented as the result of the EU research project. AVISPA is
composed of the following four self-complementing modules: OFMC applying
symbolic verification on-the-fly via analysis of a transition system described in
the specification language IF, CL-AtSe using ’constrain solving’ and enables
discovering of type flaws, SATMC being a bounded model checker exploiting
a SAT-solver, and TA4SP applying a method based on regular tree languages
and therm rewriting.

On the other hand, verification systems for distributed and real time sys-
tems like SMV [24], Spin [14], KRONOS [29], UppAal [3], or Verics [11] en-
joy a much longer history and experience in use. It is clearly very interest-
ing to investigate methods of applying the above tools to verification of secu-
rity protocols [17,28,10,16,15]. In this paper we are interested in using tools
that accept inputs represented by networks of (timed) automata as these can
be then verified with most of the existing symbolic and non-symbolic model
checkers. Verification can be performed either indirectly by specifying a pro-
tocol in a higher order language and then translating it to automata or di-
rectly by modelling a protocol by a network of automata. In this paper1 we
offer a new syntax and semantics of security protocols, and an entirely novel
approach to their verification (to the best of our knowledge). Our main and
original idea about consists in using networks of automata for modelling sepa-
rately the participants and their knowledge about secrets. Thanks to that we
get a very distributed representation of the protocol executions, which is im-
portant for an efficient symbolic encoding and model checking. To this aim we
develop a novel semantics of security protocols, where the notion of a compu-
tational structure and an interpretation is based on the ideas that appeared
in [18,5]. Next, we give a method for representing the executions of a security
protocol (within a computational structure for a bounded number of sessions)
by the runs of the product automaton of a network of the above mentioned
automata and show how to look for attacks on authentication. To this aim we
use Bounded Model Checking (BMC), which consists in translating the prob-
lem of reachability in the product automaton to satisfiability of some propo-
sitional formula. Moreover, in addition to prove reachability of an undesired
state (in case there is an attack on the protocol), we can also prove unreach-
ability of such a state if there is no attack in the computational structure.
This seems to be as well a novel application of BMC to verification of security
protocols.

1 Some preliminary results [19] were presented at CS&P’06.
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Our model allows for specification and verification of untimed cryptographic
protocols which realise the well-known challenge-response idea. The Needham-
Schroeder public key protocol [6] is the best known example here, but there are
other more complicated protocols like NSPK-Lowe, Andrew, TMN, Otway-Rees,
and Yahalom [6,7] that fall into that class as well. In this paper, for simplicity of
a translation to automata, we assume that letters sent in the executions of the
protocols cannot include nested ciphers. We focus on the public key cryptogra-
phy, but it is easy to observe that this model is adequate in the case of symmetric
cryptography too. Our model of the Intruder’s behaviour follows the well known
Dolev-Yao model [12] in which the Intruder can intercept and modify all the
letters. However, in our experiments we are dealing with a limited model of the
Intruder in which he can only receive letters sent to him when playing the role of
himself or impersonating another participant. This limitation allows to look for
attacks in a more efficient way as the size of a state space is then much limited.

The rest of the paper is organised as follows. In Section 2 we introduce syntax
for dealing with untimed security protocols. A computational structure gener-
ating all the runs of the protocols considered is defined in Section 3. A method
for finding attacks by analysing computations of the protocol is shown in Sec-
tion 4. Section 5 defines network of automata for representing the participants
of a protocol and their knowledge about secrets. Then, experimental results are
given in Section 6 and some concluding remarks in Section 7.

2 Syntax of Security Protocols

In this section we introduce syntax for dealing with untimed security protocols.
To this aim, we give some notations used in the rest of the paper. Next, we define
the following basic syntactic notions of our model.

– TP = {P1,P2, . . . ,PnP } is a set of symbols representing the users of the
computer network,
TI = {IP1 , IP2 , . . . , IPnP

} is a set of symbols representing the identifiers of
the users,

– TK =
⋃nP

i=1{KPi ,K−1
Pi
} is a set of symbols representing the cryptographic

keys of users (public and private respectively),
– TN =

⋃nP

i=1{N 1
Pi

, . . . ,NnN

Pi
}2 is a set of symbols representing the users’

nonces,
– {”(”, ”)”, ”{”, ”}”, ”, ”} is a set of the auxiliary symbols.

Definition 1 (Letter Terms). By a set of letter terms T we mean the smallest
set satisfying the following conditions:

1. TP ∪ TI ∪ TK ∪ TN ⊆ T .
2. If X ∈ T and Y ∈ T , then the concatenation X · Y ∈ T ,

2 We assume that nP and nN are some fixed natural numbers.
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3. If X ∈ T and K ∈ TK, then 〈X〉K ∈ T 3.

Next, we define some useful relations over the set T .

Definition 2. Let ≺·T ⊆ T × T be the smallest relation (called (immediate)
subterm relation), which satisfies the following conditions:

1. If X, Y ∈ T , then X ≺·T X · Y and Y ≺·T X · Y ,
2. If X ∈ T and K ∈ TK, then X ≺·T 〈X〉K and K ≺·T 〈X〉K.

By �T we denote the transitive and reflexive closure of ≺·T . Next, for any X ⊆ T
we define a sequence of the sets (Xn)n∈N that are subsets of T :

– X 0 def
= X ,

– Xn+1 def
= Xn∪ {Z ∈ T | (∃X, Y ∈ Xn, K ∈ X∩TK) Z = X ·Y ∨Z = 〈X〉K}.

Intuitively, the set Xn+1 contains the, gradually built, letter terms from Xn

using the operations of composition and encryption. In what follows, for any set
Z by 2Z

fin we denote a set of all the finite subsets of Z.

For X ∈ 2Tfin the set Comp(X )
def
=

⋃
n∈N Xn is composed of all the letters

that can be constructed out of elements of X only4.
Now, we are ready to define the syntax for a protocol step and then for

a protocol itself. A notion of a step is clearly more complicated than in the
common language as it provides the information not only about the sender P ,
the receiverQ, and the letter L sent from P to Q, but also about letters necessary
to compose L as well as generated secrets necessary to compose L. The intended
aim of this extra information is to point out to additional actions of the sender
like generating new secrets or composing the letter L.

Definition 3. By a (protocol) step α we mean a five-tuple (P ,X ,G,Q,L) ∈
TP × 2Tfin × 2TK∪TN

fin × TP × T , with the following intuitive meaning:
P - the sender of the step,
X - the set of letters necessary to compose L,
G - the set of generated secrets necessary to compose L,
Q - the receiver of L, and
L - the letter sent from P to Q,

that satisfies the following conditions:

1. P �= Q (nobody can send letters to himself),
2. L ∈ Comp(X ) ∧ (∀Y ⊆ X )(L ∈ Comp(Y) ⇒ Y = X ),

(X is a minimal set from which L can be constructed)
3. G ⊆ X (the secrets of G are elements of X ).

By a protocol Σ we mean a finite sequence (α1, . . . , αn) of steps.
3 〈X〉K is a term that is interpreted as a ciphertext containing the letter X encrypted

with the key K.
4 Description is not allowed here.
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Example 1. We consider Needham Schroeder Public Key Authentication Proto-
col (NSPK) as a working example. Below, syntax of NSPK is defined.
TP = {A,B}, TI = {IA, IB}, TK = {KA,KB}, TN = {NA,NB}. The proto-
col NSPK is given by the following sequence of steps: (α1, α2, α3), where:

α1 = (A, {NA, IA,KB}, {NA},B, 〈NA, IA〉KB ),
α2 = (B, {NA,NB,KA}, {NB},A, 〈NA,NB〉KA),
α3 = (A, {NB,KB}, ∅,B, 〈NB〉KB). �

3 Computational Structure

In this section we define a computational structure generating all the compu-
tations (under the interpretations considered) of an authentication protocol in-
vestigated. Later, we aim at representing these computations by runs of some
network of automata. In general, we could deal with an infinite number of
sessions in a computational structure, but because we aim at verifying our pro-
tocols in an automatic way, we restrict ourselves to a bounded number of ses-
sions by limiting the number of nonces. We start with defining the following
sets:

• P = {p1, p2, . . . , pnp} - a set of the honest participants in the network,
• Pι = {ι, ι(p1), ι(p2), . . . , ι(pnp)} - a set of the dishonest participants con-

taining the Intruder and the Intruder impersonating the participant pi for
1 ≤ i ≤ np,

• I = {ip1 , . . . , ipnp
, iι} - a set of the identifiers of the participants in the

network,
• K =

⋃np

i=1{kpi , k
−1
pi
} ∪ {kι, k

−1
ι } - a set of the cryptographic keys of the

participants,
• N =

⋃np

i=1{n1
pi

, . . . , nkN
pi
} ∪ {n1

ι , . . . , n
kN
ι } - a set of the nonces5.

Definition 4. By a set of letters L we mean the smallest set satisfying the
following conditions:

1. P ∪Pι ∪ I ∪K ∪ S ⊆ L,
2. If x, y ∈ L, then the concatenation x · y ∈ L,
3. If x ∈ L and k ∈ K, then 〈x〉k ∈ L,
〈x〉k is a ciphertext consisting of the letter x encrypted with the key k.

Next, we define some auxiliary relations over the set L.

Definition 5. Let ≺· ⊆ L× L be the smallest relation (called (immediate) sub-
letter relation) satisfying the following conditions:

1. If x, y ∈ L, then x ≺· x · y and y ≺· x · y,
2. If x ∈ L and k ∈ K, then x ≺·〈x〉k and k ≺·〈x〉k.
5 As before, we assume that np and kN are some fixed natural numbers. For simplicity,

we take the same number of nonces for each user.
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By � we denote the transitive and reflexive closure of ≺·. Next, for any X ⊆ L
we define a sequence of the sets (Xn)n∈N that are also subsets o L, where

– X0 def
= X ,

– Xn+1 def
= Xn ∪ {z ∈ L | (∃x, y ∈ Xn, k ∈ X ∩K) z = x · y ∨ z = 〈x〉k}.

The intuition behind this definition is the same as for the corresponding one
in Section 2, i.e., the set Xn+1 contains the, gradually built, letters from Xn

using the operations of composition and encryption. Next, define the set
Comp(X)

def
=

⋃
n∈N Xn which consists of all the letters that can be composed

out of elements of X only6 and the set Sublet(X)
def
= {l ∈ L | (∃x ∈ X) l � x}

which contains all the subletters of X .

Definition 6. Let X ⊆ L and K ⊆ K. Define the set ξK(X) ⊆ L as the smallest
set of letters satisfying the following conditions:

1. X ⊆ ξK(X),
2. if l ·m ∈ ξK(X), then l ∈ ξK(X) and m ∈ ξK(X),
3. if 〈l〉k ∈ ξK(X) and k ∈ ξK(X) ∪K, then l ∈ ξK(X).

The set ξK(X) contains all the letters which can be retrieved from X by de-
composing a concatenation or decrypting a letter using a key, which is either in
ξK(X) or in K. By ξ(X) we mean the set ξ∅(X).

Next, we define interpretations of the terms of T . Each interpretation deter-
mines one execution of the protocol (defined as a syntactical object).

Definition 7. By an interpretation of the set of the letter terms T we mean
any injection f : T → L satisfying the following conditions:

1. f(TP ) ⊆ P ∪Pι, f(TI) ⊆ I, f(TK) ⊆ K, f(TN ) ⊆ N,
2. (∀X, Y ∈ T ) f(X · Y ) = f(X) · f(Y ) (homomorphism),
3. (∀X ∈ T )(∀K ∈ TK) f(〈X〉K) = 〈f(X)〉f(K) (homomorphism),
4. If f(P) = p for p ∈ P, then f(IP) = ip, f(NP) ∈ {n1

p, . . . , n
kS
p },

f(KP) = kp and f(K−1
P ) = k−1

p .
5. If f(P) = ι, then f(IP) = iι, f(KP) = kι and f(K−1

P ) = k−1
ι .

6. If f(P) = ι(p), then f(IP ) = ip, f(KP) = kp and f(K−1
P ) = k−1

p ,
7. f(TP ) \Pι �= ∅

The condition 1 states that the atomic terms are mapped into corresponding
objects of the computational structure, i.e., symbols representing participants
are mapped into participants, etc. The condition 2 and 3 guarantee the homo-
morphical separation between the mapped symbols. The condition 4 says that
the symbols related to a given participant are mapped into corresponding ob-
jects (identifiers, keys, nonces) in the structure. The conditions 5-7 are related
to our model of the Intruder. The condition 5 determines that if the Intruder
6 Description is not allowed here.
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wants to play in an execution of the protocol the role of himself, then he uses
his own identifier and keys. There is no condition on the nonces used by the
Intruder, as we assume that he can use any nonce. The condition 6 states that if
the Intruder ι impersonates another participant p in some interpretation, then
in any execution under this interpretation p’s keys and p’s identifier need to be
used by ι. Then, due to the condition 1, no participant symbol is mapped to p in
this interpretation. The last condition says that at least one honest participant
takes part in each interpretation.

In order to define later an interpretation of a protocol step in which the
Intruder is the sender, we need the notion of a set of generators for a letter.

Definition 8. Let l ∈ L be a letter and X ⊆ L. The set X is said to be a set of
generators of l (denoted by X � l) if the following conditions are met:

1. X ⊆ Sublet({l}),
2. l ∈ Comp(X),
3. (∀m ∈ X)(m /∈ Comp(X \ {m}),
4. (∀m ∈ X)(l /∈ Comp(X \ {m}).

Intuitively, we have X � l if all the elements of X are subletters of l, l can be
composed out of the elements of X , and X is a minimal such a set.

Example 2. Consider the letter l = 〈ia, na〉kb
. Observe that the sets

X1 = {ia, na, kb} and X2 = {〈ia, na〉kb
} are sets of independent generators of l,

i.e., we have X1 � l and X2 � l.

Having defined a set of letter generators and an interpretation of T , we are now
ready to apply it to a protocol step and then to the whole protocol.

Definition 9. Consider a step α = (P ,X ,G,Q,L) of a given protocol Σ and an
interpretation f of T . By the f -interpretation of the step α (denoted by f(α))
we mean the following five-tuple:

– (f(P), f(X ), f(G), f(Q), f(L)7), if f(P) ∈ P,
– (f(P), {X | X � f(L)}, ∅, f(Q), f(L)), if f(P) ∈ Pι.

In the case when the Intruder is the sender, we assume that he can compose a
letter f(L) from any set which generates f(L). We also assume that the Intruder
has got a set of nonces at his disposal and he does not need to generate them.
The reason is that the Intruder can use the same nonce many times and in
different sessions.

By the execution of a protocol Σ = (α1, α2, . . . , αn) under an interpretation f
we mean the sequence f(Σ) = (f(α1), f(α2), . . . , f(αn)).

Example 3. Again, we exemplify the above notions on NSPK. P = {a, b},
Pι = {ι, ι(a), ι(b)}, I = {ia, ib, iι}, K = {ka, kb, kι}, N = {na, nb, nι}. Consider
the interpretation f1 defined as follows: f1(A) = a, f1(B) = b, f1(IA) = ia,
f1(IB) = ib, f1(NA) = na, f1(NB) = nb, f1(KA) = ka, f1(KB) = kb. We
have the following execution of NSPK: (f1(α1), f1(α2), f1(α3)), where:
7 We assume that any private key cannot be an element of the contents of f(L).
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– f1(α1) = (a, {na, ia, kb}, {na}, b, 〈na, ia〉kb
),

– f1(α2) = (b, {na, nb, ka}, {nb}, a, 〈na, nb〉ka),
– f1(α3) = (a, {nb, kb}, ∅, b, 〈nb〉kb

). �

In order to define knowledge of the participants and the Intruder we need to
introduce the following auxiliary notions. If f(αi) = (p, X, G, q, l), for some
p, q ∈ P ∪ Pι, X ∈ 2L

fin, G ∈ 2K∪N
fin , and l ∈ L, then we use the following

notations:
Sendf(αi) = p (the sender of f(αi)),
Lettf(αi) = l (the letter of f(αi)),
Genf(αi) = G (the set of generated new secrets in f(αi)),
Respf(αi) = q (the responder of f(αi)), and
Partf(αi) = {Sendf(αi), Respf(αi)}.

Additionally if Sendf(αi) ∈ P, then let Compf(αi) = X (the set of letters that
are sufficient to compose Lettf(αi)) and if Sendf(αi) ∈ Pι, then let
Compf(αi) =

⋃
X�Lettf(αi) X (the union of sets which generate Lettf(αi)).

For a set of interpretations F , we define the set Compp
F (Compι

F ) of the
letters, which the participant p ∈

⋃
f∈F f(TP ) \Pι (the Intruder ι, resp.) needs

to compose all the letters sent in an execution under any interpretation f ∈ F .

Definition 10. The set Compp
F =

⋃
1≤i≤n

⋃
{f∈F|Sendf(αi)=p} Compf(αi) for

an honest user p is the union of all the sets Compf(αi) for all i ≤ n and f ∈ F ,
where Sendf(αi) = p.

The set Compι
F =

⋃
1≤i≤n

⋃
{f∈F|Sendf(αi)∈Pι} Compf(αi) is the union of

all the sets Compf(αi) for all i ≤ n and f ∈ F , where Sendf(αi) ∈ Pι.

Consider any finite sequence of interpretations of k protocol steps r = (f1(αi1),
f2(αi2), . . . , fk(αik

)). For every p ∈
⋃k

i=1 f i(TP ) we define a sequence of the
participant’s knowledge (κj

p)j=1,...,k at the steps of the protocol.

Definition 11. For an honest participant p ∈
⋃

f∈F f(TP ) \ Pι his knowledge
at the step j is given inductively as follows:

κ0
p = I ∪ {k−1

p } ∪ {kq | q ∈ P} ∪ {kι},

κj+1
p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κj
p if p �∈ Partf

j+1(αij+1 ),

κj
p ∪ Genfj+1(αij+1 ) if p = Sendfj+1(αij+1 ),

Compp
F ∩ ξ{k−1

p }(κ
j
p ∪ {Lettf

j+1(αij+1 )}) if p = Respfj+1(αij+1 ).

The intuition behind the above definition is as follows. The knowledge of a par-
ticipant not participating in a protocol step is not changing. If a participant is
the initiator of a step, then his knowledge is extended with the set of the gen-
erated nonces. If a participant is the responder of a step, then his knowledge is
extended by all the letters, which can be retrieved from the former knowledge
and the letter actually received. But, for efficiency reasons it is restricted to



154 M. Kurkowski, W. Penczek, and A. Zbrzezny

a subset of Compp
F , i.e., to the letters which the participant needs in order to

compose any letter in any execution determined by F .
We define two models of the Intruder’s knowledge. The first one is the full

Dolev-Yao model the Intruder’s knowledge, whereas the second model restricts
the Intruder such that if he is not the responder of a letter, then his knowledge
does not change.

Definition 12. The Intruder’s knowledge at each step j of the protocol is com-
mon for all p ∈

⋃
f∈F f(TP ) ∩Pι and it is given inductively as follows:

κ0
ι = I ∪ {k−1

ι , kι} ∪ {kq | q ∈ P} ∪ {n1
ι , . . . , n

kN
ι },

For the D-Y model of the Intruder:
κj+1

ι = Compι
F ∩ ξ{k−1

ι }(κ
j
ι ∪ {Lettf

j+1(αij+1 )}).
For the restricted model of the Intruder:

κj+1
ι =

⎧
⎪⎨

⎪⎩

κj
ι if Respfj+1(αij+1 ) /∈ Pι,

Compι
F ∩ ξ{k−1

ι }(κ
j
ι ∪ {Lettf

j+1(αij+1 )}) if Respfj+1(αij+1 ) ∈ Pι.

Notice the Intruder is retrieving all the possible letters from his knowledge and
the letter he has interecepted (received), which is restricted to a subset of Compι

F
for efficiency reasons. For simplicity, we assume that the Intruder does not gen-
erate his nonces as he can use them several times in many executions. This does
not introduce any limitations.

In the following definition we formulate the conditions which guarantee that
a sequence of protocol step interpretations is a computation of the protocol.

Definition 13. By a computation of the protocol Σ we mean any injective finite
sequence of protocol step interpretations: r = (f1(αi1 ), f2(αi2), . . . , fk(αik

) )
which meets the following conditions:

1. (∀k ∈ N+)[ik > 1 ⇒ (∃j < k)( f j = fk ∧ ij = ik − 1)],
2. (∀k, j ∈ N+)[k �= j ⇒ Genfk(αik

) ∩Genfj(αij
) = ∅],

3. (∀j ∈ N+)[Lettf
j(αij

) ∈ Comp(κj−1

Send
fj (αij

) ∪Genfj(αij
))].

The first condition states that for each protocol step (except for the first one)
in interpretation f , there is a preceding step in the same interpretation. The
second one says that the sets of generated nonces are disjoint, whereas the third
one guarantees that the letter Lettf

j(αij
) can be sent by Sendfj(αij

) only if it
can be composed from the set of currently generated nonces and the knowledge
of the participant Sendfj(αij

) at the step j − 1.

4 Attacks Upon Protocols

Security protocols are used in order to establish a secure communication channel
between two parties involved in the communication. This is obtained by ensuring
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that each party is confident about several security properties: e.g., that the other
party is who they say they are (authentication), a confidential information is not
visible to non-authorised parties (secrecy), the information exchanged by two
parties cannot be altered by an intruder (integrity), and finally the parties taking
part in the transaction cannot deny it later (non-repudiation).

Below, we focus on checking authentication only. We say that a given protocol
is correct if the protocol cannot be executed in such a way that identifiers or keys
of one participant are used by someone else. Having this in mind, we give the
following definition.

Definition 14 (Attacking execution). By an attacking execution we mean
any execution under an interpretation f , where f(P) = ι(p), for some P ∈ TP

and p ∈ P .

Example 4. Consider the interpretation f2 defined as follows: f2(A) = ι(a),
f2(B) = b, f2(IA) = ia, f2(IB) = ib, f2(NA) = na, f2(NB) = nb,
f2(KA) = ka, f2(KB) = kb. We have the following execution of the NSPK
protocol: (f1(α1), f1(α2), f1(α3)), where:

f2(α1) = (ι(a), {X1, X2} , ∅, b, 〈na, ia〉kb
),

f2(α2) = (b, {na, nb, ka}, {nb}, ι(a), 〈na, nb〉ka),
f2(α3) = (ι(a), {X3, X4}, ∅, b, 〈nb〉kb

),
X1 = {na, ia, kb}, X2 = {〈na, ia〉kb

}, X3 = {nb, kb}, X4 = {〈nb〉kb
}. �

Definition 15 (Attack). By an attack upon a protocol we mean any of its
computations such that an attacking execution is its subsequence.

The following example shows an attack on NSPK.

Example 5. Consider the interpretation f2 of Example 4 and the interpretation
f3 defined below: f3(A) = a, f3(B) = ι, f3(IA) = ia, f3(IB) = iι,
f3(NA) = na, f3(NB) = nb, f3(KA) = ka, f3(KB) = kι.
For f3 we have the following execution of NSPK: (f3(α1), f3(α2), f3(α3)), where:

f3(α1) = (a, {na, ia, kι}, {na}, ι, 〈na, ia〉kι).
f3(α2) = (ι, {X5, X6}, ∅, a, 〈na, nb〉ka),
f3(α3) = (a, {nb, kι}, ∅, ι, 〈nb〉kι)
with X5 = {na, nb, ka} and X6 = {〈na, nb〉ka}.

Observe that the sequence r = (f3(α1), f2(α1), f2(α2), f3(α2), f3(α3), f2(α3)) is
a computation 8 which contains an attacking execution. Thus, r is an attack.

8 A simplified notation of this computation is the following:
a → ι : 〈na, ia〉kι ,

ι(a) → b : 〈na, ia〉kb
,

b → ι(a) : 〈na, nb〉ka ,
ι → a : 〈na, nb〉ka ,
a → ι : 〈nb〉kι ,

ι(a) → b : 〈nb〉kb
.
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5 Networks of Communicating Automata

In this section we represent the computations of a protocol by runs of a network
of communicating automata, where each automaton represents one component
of the protocol.

Definition 16 (Automaton). An automaton Ai is a 4-tuple (Σi, Li, s
0
i , Ti),

where

– Σi is a finite set of actions,
– Li is a finite set of locations,
– s0

i ∈ Li is the initial location,
– Ti ⊆ Li ×Σi × Li is a transition relation.

A set of communicating automata can be composed into the global (product)
automaton by the standard multi-synchronisation approach: the transitions that
do not correspond to a shared action are interleaved, whereas the transitions
labelled with a shared action are synchronised. Assume a set of n communicating
automata {A1, . . . , An} and let Σ(a) = {1 ≤ i ≤ n | a ∈ Σi}.

Definition 17 (Product Automaton). The product automaton of the au-
tomata Ai is defined by A = (Σ, G, s0, T ), where:

– Σ =
⋃n

i=1 Σi is a finite set of actions,
– G = L1 × . . .× Ln is a finite set of global states,
– s0 = (s0

1, . . . , s
0
n) is the initial state,

– T is a transition relation, where ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) ∈ T iff

∀i∈Σ(a) (li, a, l′i) ∈ Ti and ∀i∈{1,...,n}\Σ(a) li = l′i.

By a run of A on a word a1 · · ·an we mean a sequence of states (s0, . . . , sn) such
that s0, . . . , sn ∈ G, s0 = s0, and (si, ai, si+1) ∈ T for all 1 ≤ i ≤ n− 1. A state
s ∈ G is reachable if there is a run of A s.t. its final state is equal to s.

Now, we are going to use networks of automata for modelling executions of
the protocol as well as for modelling the knowledge of the participants.

5.1 Automata for Modelling Executions of the Participants

Assume we are dealing with a protocol Σ = (α1, . . . , αn).

Definition 18 (Automaton for execution). Consider the execution of the
protocol Σ under an interpretation f , i.e., (f(α1), f(α2), . . . , f(αn)). This exe-
cution is modelled by the automaton Af = (Σf , Qf , f(α0), δf ), where:

- Qf = {sf
0 , sf

1 , sf
2 , . . . , sf

n} is the set of states, where sf
0 is the initial state,

- Σf ={kf(αi) | 1 ≤ i ≤ n ∧ Sendf(αi) ∈ P} ∪⋃n
i=1

⋃
X⊆L{kX

f(αi)
| Sendf(αi) ∈ Pι ∧X � Lettf(αi) ∧X �= {Lettf(αi)}},

- δf = {(sf
i−1, kf(αi), s

f
i ) | 1 ≤ i ≤ n ∧ kf(αi) ∈ Σf} ∪

{(sf
i−1, k

X
f(αi)

, sf
i ) | 1 ≤ i ≤ n ∧ kX

f(αi)
∈ Σf}.
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The intuition behind the above definition is as follows. Each state sf
i of the

automaton is reached after executing the step αi of the execution (under f) of
the protocol. If the sender of this step is honest, then there is only one possibility
to execute this step as the sender needs to have the required knowledge for
composing the letter sent in this step. However, if the sender of this step is the
Intruder, then there are many possibilities to execute this step determined by the
sets of generators of the letter to be sent. Each of these possibilities is labelled
with a different label kX

f(αi)
.

5.2 Automata for Modelling the Knowledge of the Participants

Consider a finite set of protocol interpretations F .

Definition 19 (Automaton for the knowledge of a honest participant)
For each honest participant p ∈ (

⋃
f∈F f(TP ) \ Pι) and each element

l ∈ Compp
F \ κ0

p, we define the following (knowledge) automaton
Ap

l = (Σp
l , Qp

l , q
p
l , δp

l ), where

– Σp
l

def
= {k ∈

⋃
f∈F Σf | Cond1(k) ∨ Cond2(k)} with

Cond1(k) := (∃f ∈ F)(∃i ≤ n)(sf
i−1, k, sf

i ) ∈ δf ∧
(i)

(
p = Sendf(αi) ∧ l ∈ Genf(αi)

)
∨

(ii) (p = Respf(αi) ∧ l ∈ ξ{k−1
p }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i− 1})((p = Respf(αj) ⇒ l /∈ ξ{k−1
p }(Lettf(αj))) ∧

∧ (p = Sendf(αj) ⇒ l /∈ Genf(αj)))
Cond2(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ) ∧

(iii) (p = Sendf(αi) ∧ l ∈ Compf(αi) \Genf(αi))∨
(iv) (p = Respf(αi) ∧ l ∈ ξ{k−1

p }({Lettf(αi)}) ∧
∧ (∀j ∈ {1, . . . , i− 1})((p = Respf(αj) ⇒ l /∈ ξ{k−1

p }(Lettf(αj))) ∧
∧ (p = Sendf(αj) ⇒ l /∈ Genf(αj)))

– Qp
l = {qp

l , sp
l } is the set of states,

– qp
l is the initial state,

– δp
l is the transition relation given as follows

(qp
l , k, sp

l ) ∈ δp
l iff Cond1(k), (sp

l , k, sp
l ) ∈ δp

l iff Cond2(k).

If the automaton Ap
l is in the state qp

l , then this means that the participant p
does not know l. If the automaton Ap

l moves to the state sp
l , then this corresponds

to the fact that p learns about l and can use it. The condition (i) specifies that
l is generated by p at the step f(αi). The condition (ii) says that p learns about
l at the step f(αi). This is modelled only once in order to reduce the number
of the transitions. The condition (iii), which defines the loop, enables p to use l
while composing new letters. The condition (iv) enables to receive l in a different
execution that the one, which was used to define the condition (ii).

Example 6. The network of automata that model the execution and the knowl-
edge of the participants of Example 3 is shown in the figure below.
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We give two versions of the automata for the Intruder’s knowledge.

Definition 20 (Automaton for the knowledge of the Intruder). First,
we give the automaton corresponding to the full D-Y Intruder’s knowledge and
then we discuss the modifications for the restricted model.

The D-Y model of the Intruder: for each letter
- l ∈ Compι

F ∩ ξ{k−1
ι }(

⋃
f∈F

⋃
i≤n{Lettf(αi)}) \ κ0

ι ,
we define the knowledge automaton Aι

l = (Σι
l , Q

ι
l , q

ι
l , δ

ι
l ), where

– Σι
l

def
= {k ∈

⋃
f∈F Σf | Condι

1(k) ∨Condι
2(k)} with

Condι
1(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ∧

(i) [(l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧ (∀j ∈ {1, . . . , i− 1})(l /∈ ξ{k−1

ι }(Lettf(αj)))

Condι
2(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ∧

(ii) (Sendf(αi) ∈ Pι ∧ (∃X ⊆ L)(X � Lettf(αi) ∧ l ∈ X ∧ k = kX
f(αi)

)) ∨
(iii) (l ∈ ξ{k−1

ι }({Lettf(αi)}) ∧ (∀j ∈ {1, . . . , i− 1})(l /∈ ξ{k−1
ι }(Lettf(αj)))).

– Qι
l = {qι

l , s
ι
l} is the set of states,

– qι
l is the initial state,

– δι
l is the transition relation given as follows:

(qι
l , k, sι

l) ∈ δι
l iff Condι

1(k), (sι
l , k, sι

l) ∈ δι
l iff Condι

2(k).

The following changes to the above definition are made for the restricted model
of the Intruder’s knowledge:

- l ∈ Compι
F \ κ0

ι ,

(i) [(Respf(αi) ∈ Pι ∧ l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i− 1})((Respf(αj) ∈ Pι ⇒ l /∈ ξ{k−1
ι }(Lettf(αj))),

(iii) (Respf(αi) ∈ Pι ∧ l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i− 1})(Respf(αj) ∈ Pι ⇒ l /∈ ξ{k−1
ι }(Lettf(αj)))).

If the automaton Aι
l is in the state qι

l , then this means that the Intruder does
not know l. If the automaton Aι

l moves to the state sι
l , then this corresponds to

the fact that ι learns about l and can use it. The condition (i) says that ι learns
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about l at the step f(αi). This is modelled only once in order to reduce the
number of the transitions. The condition (ii) enables ι to use l while composing
new letters. The condition (iii) enables to receive l in a different execution that
the one, which was used to define the condition (i).

Recall that we are dealing with the protocol Σ and a set F of its interpreta-
tions. Let A = (N, Q, s0, δ) be the product automaton of the following set of
the automata {Af | f ∈ F} ∪ {Ap

l | p ∈
⋃

f∈F f(TP ) ∩ (P ∪ {ι}) ∧ l ∈ Compp
F}.

The following theorem says that for each computation in the computation
structure there is the corresponding run in the product automaton A built for
this structure and moreover each run of A corresponds to some computation.

Theorem 1. Let f i ∈ F for 1 ≤ i ≤ k. A sequence of protocol steps
r = ( f1(αi1), f2(αi2 ), . . . , fk(αik

) ) is a computation iff there is a run in the
product automaton A on a word (kf1(αi1 ), kf2(αi2 ), . . . , kfk(αik

)), where:

kfj(αij
) ∈

⎧
⎪⎨

⎪⎩

{kfj(αij
)} if Sendfj(αij

) ∈ P,

{kX
fj(αij

) | X � Lettf
j(αij

)} if Sendfj(αij
) ∈ Pι.

Proof. By induction on the length of a computation (run). Omitted because of
the lack of space (see [20] for a proof).

Thanks to the above theorem, we can reduce an analysis of a security protocol for
interpretations assumed to verification of the corresponding product automaton.
Specifically, there is an attack on the protocol iff there is a run in the product
automaton corresponding to some attacking execution.

6 Experimental Results

We start by describing a SAT-based method of testing reachability for a network
of automata, i.e., checking whether a state satisfying certain (usually undesired)
property is reachable in the product automaton. For this, assume that ϕ is
a property to be verified. Let αk(ϕ), for k ∈ N, be a propositional formula that
is satisfiable if and only if there exists a run π of length k such that the property
ϕ holds at some state of π. Moreover, let βk, for k ∈ N, be a propositional
formula that is satisfiable if and only if there exists a run of length k.

Algorithm 1 searches for the greatest natural number k0 such that every run
is of length less or equal to k0. Such a number k0 exists if the set of the reachable
states is finite and there are no loops in the set of the reachable states, and this
is the case for all the networks of automata considered in this paper. Notice that
that if there exists a run π on which ϕ is reachable, then the length of π has to
be less or equal to k0. Therefore, we can conclude that if the property ϕ is not
reachable on any run of length less or equal to k0, then it is unreachable.

In Algorithm 1 we use the procedure checkSat(γ) that for any given proposi-
tional formula γ returns one of the following three possible values: SAT , UNSAT ,
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or UNKNOWN . The meanings of the values SAT and UNSAT are self-evident.
The value UNKNOWN is returned in two cases: either the procedure checkSat
is not able to decide satisfiability of its argument within some timeout period9 or
it has to terminate due to exhaustion of the available memory.

The above method can be applied to all the networks of automata considered
in this paper in view of the fact that there are no loops, at least in the set of the
reachable states. We would like to stress that for such networks of automata the
method is complete. Another SAT-based method of testing reachability can be
found in [30].

Algorithm 1. Algorithm for deciding reachability problem
1: k ← 0
2: loop
3: result ← checkSat(αk(ϕ))
4: if result = SAT then
5: return REACHABLE
6: else if result = UNKNOWN then
7: return UNKNOWN
8: end if

/* αk(ϕ) is not satisfiable */
9: k ← k + 1

10: result ← checkSat(βk)
11: if result = UNSAT then
12: return UNREACHABLE
13: else if result = UNKNOWN then
14: return UNKNOWN
15: end if

/* βk is satisfiable */
16: end loop

We have tested the correctness (Definition 15) of the NSPK protocol defined
in Example 1. The computational structure (defined in Example 3) is given by
18 automata modelling executions of the principals and 20 knowledge automata
(for the restricted model of the Intruder’s knowledge). Some of them are shown
in Examples 7 and 8. According to Definition 14 there are 4 attacking executions.
The experiments consisted in checking reachability (in the product automaton)
of the final states of the automata representing these four executions. We have
verified that one of these states is reachable at a run of the length 6. This run
corresponds to the attack discovered by Lowe [21] (see Example 5).

We have also verified two other protocols:

- an improved version of NSPK, known as the protocol NSPK-Lowe [21],
- an untimed version of the Wide-Mouth Frog Protocol ([6]).

The NSPK-Lowe protocol is defined as: ΣNSPK−Lowe = (α1, α2, α3), where:

9 This is preset in advance.
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α1 = (A, {NA, IA,KB}, {NA},B, 〈NA, IA〉KB ),
α2 = (B, {NA,NB, IB,KA}, {NB},A, 〈NA,NB, IB〉KA),
α3 = (A, {NB,KB}, ∅,B, 〈NB〉KB).

For the same computational structure we have obtained 18 automata for the
executions of the participants and 24 knowledge automata. It turned out that the
length of the longest possible run is equal to 13. Additionally, it has been verified
that no final state of the automata corresponding to the attacking executions is
reachable at runs of length up to 13. According to Theorem 1 this proves that
in the computational structure considered there is no attack upon the protocol
NSPK-Lowe.

We have also investigated the untimed Wide-Mouth Frog Protocol10. For the
same computational structure we have obtained 15 automata for all the execu-
tions and 12 knowledge automata. It turned out that the length of the longest
possible run in the network for untimed WMF is equal to 6. Additionally, it has
been verified that no final state of the automata corresponding to the attacking
executions is reachable at runs of length up to 6. Thus, we conclude that there
is no attack in the computational structure considered.

The experimental results are shown in the tables below. The computer used to
performexperimentswasequippedwiththeprocessor IntelPentiumD(3000MHz),
2 GB main memory, the operating system Linux and the SAT-solver MiniSat.

Table 1. Experimental results for NSPK Protocol

Table 2. Experimental results for Lowe’s NSPK Protocol

Table 3. Experimental results for Untimed WMF Protocol

10 This protocol is defined as follows:
α1 = (A, {IA, NA, IB, K, KAS}, {NA, K}, S ,< NA, IB, K >KAS ),
α2 = (S , {IA, NS , K, KBS}, {NS}, B, < NS , IA, K >KBS ).
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Table 4. Experimental results from VerICS and SATMC

Tool Protocol Time (s)
VerICS NSPK 0,09
SATMC NSPK 0,20
VerICS NSPK-Lowe 0,31
SATMC NSPK-Lowe 0,27

We have compared11 our results to these obtained from SATMC12 of AVISPA
([1]). The results are quite comparable (see the table below), but in our case
in addition to finding or not finding attacks, we can also automatically verify
with BMC that an attack does not exist at all in the computational structure
considered.

In case of verification of NSPK we have got a shorter time whereas for NSPK-
Lowe our result is slightly worse (for runs of length 7 as used by SATMC).
Clearly, much more experiments need to be made to fully compare our method
with AVISPA or other tools. But, these experiments should be conducted only af-
ter our implementation has been optimised in order to get an honest comparison.

7 Conclusions and Perspectives

In this paper we have considered attacks on authentication only, but we can
easily extend them to attacks on secrecy. In order to prove that an information
at is insecure, we have to prove that the state sι

l of Aι
l is reachable.

Our next step is to see what the limits of our method are in terms of the
number of sessions as well as in the number of participants for all the protocols
which satisfy our restrictions. Then, we are going to relax the assumption on non-
nesting ciphers and again conduct experiments with multi-session and multi-user
security protocols.
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Appendix

Example 7. A part of the network of automata that model the execution and
the knowledge of the participants of Example 4 is shown in the figure below.
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Example 8. The full network of automata that model both the executions f2

and f3 is shown in the figure below.
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Abstract. In this paper, we mainly focus on solving scheduling problems with
model checking, where a finite number of entities needs to be processed as effi-
ciently as possible, for instance by a machine. To solve these problems, we model
them in untimed process algebra, where time is modelled using a special tick ac-
tion. We propose a set of distributed state space explorations to find schedules for
the modelled problems, building on the traditional notion of beam search. The
basic approach is called distributed (detailed) beam search, which prunes parts
of the state space while searching using an evaluation function in order to find
near-optimal schedules in very large state spaces. Variations on this approach are
presented, such as distributed flexible, distributed g-synchronised, and distributed
priority beam search, which can also practically be used in combinations.

Keywords: directed model checking, distributed model checking, scheduling,
beam search.

1 Introduction

Traditionally, model checking concerns modelling systems and checking properties,
which either hold or not, in other words, the checks can be answered with either “yes” or
“no”. In more recent years, however, the awareness has grown that often other kinds of
checks, which cannot be answered in such a manner, are as important. For these checks,
one is usually interested in some measurements, such as the throughput or efficiency
of a particular system. Markov Chains, for instance, have shown to be useful when one
needs to do performance analysis of a system [9]. Although not common yet, sometimes
scheduling problems are also addressed using model checking techniques [2,28,37,41],
since the tools are usually equipped with highly expressive languages, making it pos-
sible to specify complex industrial scheduling questions. Comparing the two kinds of
property checks, one could label traditional model checking as qualitative model check-
ing and the latter one as quantitative model checking [22].

Furthermore, as state explosion is a big problem in model checking, research is being
done to efficiently explore state spaces to find deadlocks fast, particularly using Artifi-
cial Intelligence (AI) heuristic techniques, such as A∗ [15] and genetic algorithms [19].
This approach is referred to as directed model checking [15]. Although mostly used for
qualitative model checking, techniques like beam search [5] can be applied for quanti-
tative model checking, in particular to solve scheduling problems.

In an earlier paper [41], we made a first attempt at solving scheduling problems,
where a finite number of products needs to be processed as efficiently as possible by a
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machine, by modelling them using untimed process algebra and generating state spaces
from the models using a specialised toolset. Within such a state space a minimal-time
trace represents an optimal schedule for the problem at hand.

We experienced the limits of our first attempt quite soon; state spaces tend to be
very big, sometimes in the order of hundreds of gigabytes. Although we developed an
on-the-fly search algorithm, which enables us to find optimal solutions while generat-
ing, we were still confronted with technological limits. Because of this we moved to
a distributed setting with our minimal-time search algorithm. In [41], results of apply-
ing this distributed algorithm on finding schedules for a clinical chemical analyser can
be found. The algorithm enabled us to deal with bigger problems, but still we had the
impression that the technique could be improved if we were able to avoid the (many)
non-promising traces and guide the search through the state space towards near-optimal
schedules using a heuristic method. When looking at available pruning techniques in the
literature, we found beam search [5]. Beam search is a heuristic method for combina-
torial optimisation problems, which has extensively been studied in AI and operations
research [27,35]. Later this technique has been applied to scheduling problems, for
example in systems designed for complex job shop1 environments [12,17,31,38,41].
Since then new variants of beam search have been introduced, such as filtered beam
search [30] and recovery beam search [12].

Using beam search proved to be very fruitful, as we were able to find near-optimal
schedules for all the considered batches of tests of the clinical chemical analyser [41].
It sometimes took a lot of time, though, mostly due to the extra computation needed to
evaluate states. This could be improved if we moved the beam search techniques to a
distributed setting. In this paper we propose several distributed beam search variants,
focussing on detailed beam search, since due to its global view when pruning, it is not
obvious how a distributed algorithm should function.

Contributions. We show how a technique for solving scheduling problems can be
adapted to a distributed setting. The technique, beam search, is a heuristic which prunes
parts of a state space while searching, in order to find near-optimal solutions. We extend
the distributed technique to deal with arbitrary state spaces and make it more effective.

Structure of the paper. First we will present some preliminaries. Next we describe
the kind of scheduling problems we are dealing with. After that we explain the most
common forms of beam search, followed by descriptions of the distributed versions
we propose. We show how some of these versions perform in practice, looking at, as
we call it, the Zebra Finch problem, which is a combination of several river crossing
problems [14]. Finally, we discuss related work and conclude the paper.

2 Preliminaries

We use the following formalism to represent state spaces.

1 The job shop problem is the most classic scheduling problem in the literature. In its most basic
form, we have a finite set M of resources, and a number of jobs J1,. . .,Jn which compete in
using the resources in a specific order and for a finite number of time units. The problem is to
allocate the resources such that the jobs are finished in minimal time.
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Definition 1 (Labelled transition system). A Labelled Transition System (LTS) is a
tuple (Σ ,s0,Act,Tr), where Σ is a finite set of states, which is usually not known a
priori, but generated on-the-fly, s0 ∈ Σ is the initial state, Act is a given finite set of
action labels and Tr ⊆ Σ ×Act×Σ is the transition relation. A transition (s,a,s′) ∈ Tr,
denoted s a−−→ s′, indicates that the system can move from state s to s′ by performing
action a.

For T ⊆ Tr, we define nx(s,T ) = {s′ ∈ Σ | ∃a ∈ Act. s a−−→ s′ ∈ T}. We define a state s
to be an endstate iff nx(s,Tr) = /0.

Breadth-first State Space Generation. State space generation algorithms are provided
with a specification as input and produce the state space which is described by that
specification. A breadth-first state space generation (BFS) algorithm, as presented in
Algorithm 1, starts from the initial state of the specification and names it s0. State s0 is
placed in the set S0. Sets S1, S2,. . . are generated iteratively.

In Algorithm 1, expand : Σ → P(Tr) is the function that provides the interface be-
tween the state space generation algorithm and the underlying specification. For a state
s, expand(s) is the set of transitions which root in s. Set Si with i ∈N denotes the set of
states in the i + 1th level of the state space. The set Closed is used to perform delayed
duplicate detection [34] when expanding states; if a state has already been expanded
before, we do not need to expand it again. This is checked at the end of generating a
new set, hence it is delayed.

Algorithm 1. Breadth-first state space generation
procedure bfs(s0)

i := 0
Si := {s0}
Closed := /0
while Si \Closed �= /0 do

Si+1 := /0
for all s in Si \Closed do

Si+1 := Si+1∪ nx(s,expand(s))
Closed := Closed∪ Si

i := i+1
return Finished

Distributed State Space Generation. Moving to a distributed setting, we no longer
deal with one machine, but one manager and n clients C1,. . .,Cn, where n ∈N. For this
paper, it suffices to say, that in distributed BFS state space generation, every client per-
forms a BFS on the states it gets. After generating the set Si+1, given a set Si, how the
states in Si+1 should be distributed over the n clients is determined by a hash function
Checksum : Σ → N. For more information on distributed state space generation, the
reader is referred to, for instance, [11].

The language μCRL. The process algebra μCRL [21], an extension of ACP [4] with
abstract data types, is a language for specifying distributed systems and protocols in
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an algebraic style. A μCRL specification describes an LTS, in which states represent
process terms and edges are labelled with actions. This process algebra is used as input
to a state space generation toolset [7], which is accompanied by symbolic reduction
techniques. The toolset has also been extended for a distributed setting [6].

Based on the work from [8,40], we use a special tick action, which models time
progression. This is comparable to relative discrete time [1]: A tick action indicates that
the system moves to the next time slice.

Definition 2 (minimal-time trace [41]). Given an LTS and a transition label a, we say
that there is a trace with execution time t (t ∈N) to a transition with label a iff there is a
trace in the LTS starting from the starting state s0 and reaching a transition with label
a, such that the number of tick transitions occurring in this trace equals t. We define a
trace from s0 to a transition with label a to be minimal-time iff there is no other trace
in the LTS from s0 to a with less tick transitions.

Using this definition, we can formulate a scheduling problem as a reachability problem:
finding an optimal schedule to perform a batch of tasks successfully can also be seen as
finding a minimal-time trace to a transition indicating successful termination in a state
space containing all possible schedules as traces. That we can also in this manner deal
with scheduling problems involving parallel execution of tasks, will be explained in the
following section.

3 Modelling Scheduling Problems Using μCRL

Scheduling problems, in this paper, are typically about processing a certain number of
entities (for instance, products or jobs, in the case of jobshop scheduling). The pro-
cessing is usually done by a machine, or combination of machines, which can perform
tasks t1,. . .,tm ∈ Ta, where Ta is a set of task labels2, provided, that the accompanying
sets of constraints C1,. . .,Cm are met3. Furthermore, each task ti has an execution time
d(ti) associated with it, given by the function4 d :Ta→N. In these problems, a certain
goal should be reached, usually having completely processed a finite batch of entities.
The question asked in scheduling is not mainly if this goal can be reached, but how
efficiently this can be done.

As we perform scheduling using model checking tools, we are able to deal with
complex industrial systems, the models of which tend to lead to very big, arbitrarily
structured state spaces. We model tasks as transitions, meaning that performing task
ti in an execution appears as s j

ti−−→ s j+1 in the LTS, where s j and s j+1 are two states
in the trace corresponding to the execution. In state spaces, where the traces represent
schedules, we can observe the following.

A function progress: Σ →N can be constructed, which can access the state variables
of a state s, using the underlying μCRL specification of the LTS (similar to expand(s)

2 Later on, in our approach, action labels from Act represent task labels from Ta.
3 To keep things general, we do not fix these constraints to a specific notation here. Suffice it so

say that they can deal with time and data.
4 Since execution times are here represented using natural numbers, we use discrete time.
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in section 2) and quantifies the progress made to reaching some predetermined goal, for
instance having completely processed a given batch of entities. In general, say we have
c0,cend ∈N, ∀s ∈ Σ .c0 ≤ progress(s) ≤ cend and progress(s0) = c0, in other words, c0

is the initial (no) progress and cend represents having reached the goal. We do not claim
any monotonicity of this function, as in general one can imagine tasks which provide
negative progress, which, for instance, is the case in our example in section 7.

Building on Definition 1, we can now distinguish two kinds of endstates.

Definition 3 (termination and deadlock). A state s is a termination state iff it is an
endstate and progress(s) = cend. A state s is a deadlock state iff it is an endstate and
progress(s) �= cend.

The intuition behind this, is that we can distinguish two kinds of endstates: one where
the predetermined goal is reached, and one where it is not.

The general structure of a μCRL model of a scheduling problem can be described as
consisting of a process (or processes), which is an alternative composition of all tasks
ti, each followed by a sequence of tick actions, to indicate the execution time. The tasks
ti can only be executed if the accompanying conditions Ci are met, written in the model
as conditions for the actions representing the tasks, and, once executed, a task has an
effect on the progress of the processing (as expressed by function prog). So this model
can execute all available tasks as long as the constraints are satisfied. Which tasks to
execute and when is decided non-deterministically; there are no built-in priorities.

Besides that, we introduce a special action called finished. We use this action in such
a way that it can be executed iff it leads to a termination state.

Sometimes, a system consists of several processes running in parallel, and the sched-
uling problem involves the parallel execution of tasks. In μCRL, it is possible to model
multiple processes in parallel and have them work with time correctly. For this it must be
enforced that all tick actions are synchronised; only if all processes can do a tick action,
a tick action occurs. Explaining in detail how this can be achieved is outside the scope
of this paper, since it involves a detailed explanation of μCRL. The interested reader
is referred to [8,40]. We can note here, that having several processes in the structure
mentioned earlier, means that we can still relate a schedule to a path in the state space.
For this, we need to interpret a sequence of tasks, not containing any tick actions, as a
set of tasks happening at the same time. Consider, for example, the sequence a·b·tick in
a trace, where ‘·’ is the sequential composition operator of μCRL. Due to the structure
of the processes, we know that a and b originate from different processes; if not, they
would be seperated by at least one tick action (assuming that the execution of each task
takes at least one time unit). Furthermore, we can interpret a·b·tick as a and b happening
at the same time, which makes sense, considering that they happen in the same time
unit (i.e. between the same two tick actions). If we do this, then we do not differentiate
a·b·tick from b·a·tick. Note, that this relates to the notion of independent actions for
partial order reduction [32]. Using this terminology in our case, given a solution path,
we abstract away the particular action arrangement of independent actions.

Having created a μCRL model, it is possible, using the μCRL toolset, to generate a
state space from it. This state space incorporates all possible behaviour of the system
described by the model. Somewhere in this state space there is at least one minimal-time
trace to a finish. Given Definition 2, we use the finished action as transition a, in order
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to formulate a minimal-time trace to a termination. In [41], this modelling approach is
applied on a clinical chemical analyser, and a specific minimal-cost search is explained
(the search is mentioned again later in this paper in section 6).

4 Beam Search

Beam search [5] is similar to breadth-first search as it progresses level by level. At each
level, it uses a heuristic evaluation function to estimate the promise of encountered
states. The β most promising states are selected for further examination. Because of
this aggressive pruning, the generation time is a linear function of β and is thus heavily
decreased. When β → ∞, beam search behaves as breadth-first search [39].

The beam search approach is a branch-and-bound technique where only the β most
promising states at each level of the search tree are selected for further branching. This
β is the so-called beam width, which is fixed to a value before searching. Other states
are discarded, so searching can be done relatively quickly. Because of this, using the
beam search technique does not guarantee finding an optimal solution, since wrong
decisions can be made while pruning. To limit the possibility of wrong decisions one
can increase the beam width, at the cost of an increase in computational effort.

Clearly the evaluation function used to select states is very important. In the past,
two types of evaluation functions have been used: priority and total cost evaluation
functions. A priority evaluation function calculates a priority for each task, while a total
cost evaluation function calculates an estimate of the total cost of the best schedule
that can be found continuing from the partial schedule represented by the state. Priority
evaluation functions have a local view of the problem, since they only consider the next
task to be scheduled, while total cost evaluation functions have a global view, taking
the complete schedule into account. These types of functions lead to two classic beam
searches, namely priority and detailed beam search, using a priority and a total cost
evaluation function, respectively.

In a detailed beam search, at each level up to β nodes are selected to continue,
regardless of what their parent states are, therefore it could be the case, that some nodes
have multiple selected children, while others have none. A total cost evaluation function
allows comparison of states from different executions as it shows the progress each
execution is making (i.e. it has a global view). This in contrast to priority evaluation
functions, which only allow comparison of alternatives, which are part of the same
trace up to that point.

In [39], detailed and priority beam search were extended for usage on arbitrary state
spaces, as opposed to highly structured trees. In the following section we present ex-
tended detailed beam search, as implemented in the μCRL state space generator. For
a detailed comparison between the basic notion of this beam search and the extension
and eventual adaptation to the μCRL toolset setting, the reader is referred to [39].

5 Extended Detailed Beam Search

In this section we first present the extended detailed beam search in its sequential form.
After that we adapt it to a distributed setting. From now on, whenever detailed beam
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search is mentioned, we refer to the search extended for arbitrarily structured state
spaces.

5.1 Sequential Detailed Beam Search

A user of the μCRL toolset can perform a detailed beam search, i.e. a beam search
using a total cost evaluation function. The user can provide a function using constants
and variables from the model, combining them using mathematical operators.

Algorithm 2 shows in pseudo-code the detailed beam search algorithm as used in
the μCRL toolset. The evaluation function is called f : Σ → N. This function is de-
composed to f (s) = g(s)+ h(s), where g(s) represents the cost taken to reach s from
the root of the tree, which is defined as g(s) = g(s′)+ cost(a) if s′ a−−→ s. The function
cost : Act →N assigns weights to actions that can, for instance, denote the time needed
to perform different jobs in a scheduling problem. These are usually fixed to certain val-
ues before searching starts. Since the range of cost is non-negative numbers, if s a−−→ s′,
then g(s′) ≥ g(s), for any action a. The h(s) function is an estimation of the cost it
would take to efficiently complete the schedule continuing from s. Here, we consider
admissible heuristics, i.e. for all states s, h(s) is an underestimation of the real mini-
mal cost needed to complete the schedule. The function get fmax : P(Σ) → Σ , given
a set of states, returns one of the states that has the highest f value. It thus computes
f (s) = g(s)+ h(s) for each member of the set. Contrary to Algorithm 1, here, all Si

and Closed contain pairs of states and corresponding g-values. Finally, the functions
unify(X) and update(X ,Y ) are defined as follows: unify(X) = {〈s,g〉 ∈ X | ∀〈s′,g′〉 ∈
X .s = s′ =⇒ g ≤ g′} and update(X ,Y ) = {〈s,g〉 ∈ X | ¬∃g′ ≤ g.〈s,g′〉 ∈ Y}. These
functions are used to perform a delayed duplicate detection, where revisiting of a state
is allowed if it is reached via a path with a lower cost than the g-cost assigned to it so
far.

Note, that no additional stopping condition appears in Algorithm 2, i.e. it appears as
though we exclude searching for something in particular, for instance the violation of a
property. This, however, can in practice be done on top of any search. Relating back to
section 3, we can perform a detailed beam search and at the same time check, whether
a transition s a−−→s′ is found, such that a = finished. Once this is the case, the search can
be stopped and a trace from s0 to s′ can be returned, which corresponds to a schedule.
This approach is used in our experiments (see section 7).

5.2 Distributed Detailed Beam Search

Because of the global view of total cost evaluation functions, designing a distributed
version of detailed beam search is non-trivial. Clients should not select states for further
exploration in isolation of each other, but have to communicate.

Say we have a manager and n clients to do a distributed detailed beam search. As
described in 2, we have a hash function Checksum:Σ →N, which is used to distribute
generated states over the clients for future exploration. Say the LTS consists of levels
S0, S1, etc. As detailed beam search is done in a breadth-first manner, each level of states
Si gets distributed over the n clients before exploration, leading to the subsets S1

i ,. . .,Sn
i ,
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Algorithm 2. Detailed beam search for state space generation
procedure detbs (s0, β )

s0.g := 0
i := 0
Si := {〈s0,s0.g〉}
Closed := /0
while Si �= /0 do

Si+1 := /0
while |Si|> β do

Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}
for all s ∈ Si do

for all s a−−→ s′ ∈ expand(s) do
s′.g := s.g+cost(a)
Si+1 := Si+1 ∪ {〈s′,s′.g〉}

Closed := unify(Closed∪Si)
Si+1 := update(unify(Si+1),Closed)
i := i+1

return Finished

such that S1
i ∪ . . .∪ Sn

i = Si for all levels i, where S j
i is the subset of Si designated to

client j by the hash function.
Now, we define function p f : P(Σ) → P(P(Σ)), which is used at each level i

by each client j. For practical reasons, we say, that k is an upper limit of f . Now, p f

distributes the states from a set S j
i over k equivalence classes [σ j

0 ], . . . , [σ j
k−1], such that

∀u ∈ {0,1, . . . ,k−1}.∀s ∈ [σ j
u ]. f (s) = u.

Fig. 1. Distributing, partition-
ing and selecting

We refer to a selection of γ states from a set S j
i using

evaluation function f as sel f
γ (S j

i ) = [σ j
0 ]∪. . .∪[σ j

r ]∪[σ ′],
with r ∈N and r < k−1, such that |[σ j

0 ]∪ . . .∪ [σ j
r ]|< γ ,

[σ ′]⊆ [σ j
r+1] and |[σ j

0 ]∪ . . .∪ [σ j
r ]∪ [σ ′]|= γ . In practice,

[σ ′] ⊆ [σ j
r+1] is composed according to a so-called tie-

breaking rule. In the remainder of this paper, we denote
sel f

γ as selγ .
The goal to achieve now for the algorithm is the fol-

lowing:

∀i.selγi,1(S
1
i )∪ . . .∪ selγi,n(S

n
i ) = selβ (Si) (1)

Here, β is the beam width and γi,1, . . . ,γi,n ∈N, such that
γi,1 + . . .+ γi,n = β . If we could assume that γi,1 = . . . =
γi,n, then there would be no problem moving the sequen-
tial beam search algorithm to a distributed setting. Then,
however, besides assuming that the states of each level

are evenly distributed over the clients, we also have to assume that the β most promis-
ing states of a level are evenly distributed. This we cannot assume in general. Instead,
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we can move to a more general situation where the γi, js are unequal to each other. In
order to achieve this, extra communication is necessary.

Being in level i, let every client j first determine selβ (S j
i ), this to be prepared for the

worst case scenario where all β most promising states end up at a single client. This is
illustrated in the top part of Figure 1, where each row in the diagram represents a client,
and each column represents an equivalence class. Having constructed the equivalence
classes, selβ (S j

i ) is determined, which, in Figure 1, is highlighted in grey for each client.
Once this is done, the clients send a set of tuples, each consisting of an evaluation value
and the number of states in selβ (S j

i ) that have this evaluation value to the manager. To
put it more formal, the following is sent by each client j, being in level i of the LTS:

E j
i = {(r, |[σ j

r ]∩ selβ (S j
i )|)|0 ≤ r ≤ k−1∧|[σ j

r ]∩ selβ (S j
i )| �= 0} (2)

All the sets E j
i sent by the clients are used by the manager to determine a final selec-

tion of β states. This is illustrated in the bottom part of Figure 1. First Ei is created
as Ei = {( j,e, t)|(e,t) ∈ E j

i }, where e and t correspond to the first and second ele-
ment in the tuples calculated in (2). Similar to p f , we define a function pe : P(N3) →
P(P(N3)), which allows us to distribute the elements of the set Ei over k equivalence
classes [e0], . . . , [ek−1], such that ∀u ∈ {0,1, . . . ,k−1}.∀( j,e, t) ∈ [eu].e = u.

For selecting the β best states, we define a function Tj : P(N3) → N, which re-
turns the number of states from client j represented in the given evaluation set E;
more specific, Tj(E) = 0 + ∑( j,e,t)∈E ′ t, with E ′ = {( j′,e′, t ′) ∈ E | j′ = j}. We define
T : P(N3) → N as the total number of states represented in the given evaluation set
E , so T (E) = ∑n

j=1 Tj(E). We refer to a selection of β triples from Ei as evselβ (Ei) =
[e0]∪ . . .∪ [er]∪ [e′], with r ∈ N and r < k− 1, such that T ([e0])+ . . .+ T ([er]) < β ,
[e′] = evsubselβ−(T([e0])+...+T ([er ]))([er+1]). Here, evsubselβ ′([eu]) = {( j0,e0, t0)}∪ . . .∪
{( jw−1,ew−1,tw−1)}∪{( jw,ew,t ′w)}, where ( j0,e0,t0), . . . ,( jw,ew, tw)∈ [eu],t ′w ≤ tw and
t0 + . . .+ tw−1 + t ′w = β ′. In practice, [e′] is composed according to a tie-breaking rule.

Each client j receives a width γi, j = Tj(evselβ (Ei)), which it uses to obtain selγi, j(S
j
i ).

Since selγi, j (S
j
i )⊆ selβ (S j

i ), this set can be constructed from memory. For this approach
only one extra communication round is necessary. Memory-wise, a distributed detailed
beam search with beam width β is comparable with a sequential detailed beam search
with beam width n.β , but, of course, on the whole, there is more memory available in a
distributed setting than in a sequential one.

One advantage of detailed beam search is that if a level contains up to β states, for all
states s in the level, h(s), which can be computationally expensive, does not have to be
calculated. To achieve this in the distributed version, the manager gets from every client
the number of newly generated states. The sum of these numbers equals the complete
size of the next level. If it sends this number together with the next continue command,
the clients know whether or not to prune (see Algorithms 3 and 4).

In general, distributed state space generation algorithms benefit from symmetry. If
all clients have to do a similar amount of work, than little to no idle time occurs in any of
the clients and therefore no processing power is wasted. However, if we allow unequal
γi, js, then the workload of the clients can be very unequal at times. It makes no sense
to have clients idle, while they could very well expand states. Exploring more states
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than originally asked for can in practice, where the accuracy of the evaluation function5

and the minimally necessary beam width are in general not known, only be seen as
an improvement in accuracy6. For this reason we decided to create a variant where the
manager does not provide every client j with γi, j, but a single γi = max(γi,1,γi,2, . . . ,γi,n)
is provided to all clients. In this way every client expands the same amount of states7,
and we know that the β most promising states are selected8.

Algorithms 3 and 4 show what the clients and the manager do in a distributed detailed
beam search, respectively. The selection procedure of the manager in order to obtain
γi is done in calculateLimit(). Matching send and receive functions can be identified
by their names. Note, that duplicate detection is now performed by each client after
having received the new set of states to be expanded. This works thanks to the Checksum
function, which ensures that a state s is always assigned to the same client j. During the
generation, a client can receive the following commands from the manager:

– continue: In the next step, receive new states in Si and expand them.
– finish: Stop the search algorithm.

6 Other Beam Search Variants

In general, minimal-time traces to a transition a are not necessarily shortest traces to
this transition. This fact means that when first encountering a in a BFS, we cannot
claim having found a minimal-time trace. This can, however, be achieved by search-
ing a state space using minimal-cost, or minimal-time, search [41], which can be seen
as uniform-cost search [24], where the costs are modelled using additional actions.
There, compared to BFS, the sets Si do not comprise of states which are i transi-
tions removed from s0, but, using a total cost function g, in each iteration, Si is trans-
formed into Ŝi = {〈s,g〉 ∈ Si | ∀〈s′,g′〉 ∈ Si.g ≤ g′}, Ŝi is expanded, leading to Ŝi+1,
and finally, Si+1 = Ŝi+1∪ (Si \ Ŝi). This technique can be combined with beam search,
resulting in g-synchronised beam search, which is presented in [39] as an instance
of G-synchronised beam search, where G can be any reasonable function. Compared
to regular beam search, now only states with equal g-values are considered at the
same time and states are selected purely on their h-value. It can be seen as greedy
search, as described in [36], on top of minimal-cost, or uniform-cost, search. In each
iteration, first, the current Si is transformed to Ŝi like in minimal-cost search, as de-
scribed earlier. Then, h is applied on Ŝi, in order to keep up to β states, as is done

5 Of course, an important problem is to find a very good evaluation function. This is however
beyond the scope of this paper, where we assume a given function, its accuracy unknown.

6 There are results where a bigger beam width does not correspond to a higher accuracy, such as
in [29,41] and in section 7.2. However, this phenomenon mainly occurs when using relatively
small beam widths (compared to the size of the state space), and can therefore be ignored for
bigger cases.

7 The exception to this is when a client has less states available than it is told to expand.
8 One could argue that another approach is to redistribute the β selected states over the clients, in

order to balance the workload. However, then we go against the distribution of the hash func-
tion, which means that clients will no longer be able to perform duplicate detection, leading
possibly to redundant work.
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Algorithm 3. Distributed detailed beam search - Client Instantiator
procedure ddbsclient(CLIENTNUMBER,{clientnumbers},s0,β )

s0.g := 0
i := 0
if Checksum(s0) =CLIENTNUMBER then

Si := {〈s0,s0.g〉}
else

Si := /0
Closed := /0
SendToClientsNextLevel(Si)
(command, levelsize) := RecvFromMgr()
if command �= finish then

repeat
Si := update(unify(RecvFromClientsNextLevel()),Closed)
Si+1 := /0
if levelsize > β then

while |Si|> β do
Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}

SendToMgrEvalInfo(I), with I as (2), selβ (S j
i ) = Si

γi := RecvFromMgrLimit()
while |Si|> γi do

Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}
for all s ∈ Si do

for all s a−−→ s′ ∈ expand(s) do
s′.g := s.g+cost(a)
Si+1 := Si+1∪{〈s′,s′.g〉}

Closed := unify(Closed∪Si)
SendToClientsNextLevel(unify(Si+1))
SendToMgrSizeNextLevel(|unify(Si+1)|)
i := i+1
(command, levelsize) := RecvFromMgr()

until command = finish

return Finished

Algorithm 4. Distributed detailed beam search - Manager Instantiator
procedure ddbsmanager({clientnumbers},s0 ,β )

levelsize := 1
SendToClients(continue, levelsize)
repeat

if levelsize > β then
SendToClientsLimit(calculateLimit(RecvFromClientsEvalInfo()))

levelsize := RecvFromClientsSizeNextLevel()
if levelsize = 0 then

SendToClients(finish,0)
else

SendToClients(continue, levelsize)
until levelsize = 0
return Finished



Distributed Extended Beam Search for Quantitative Model Checking 177

in greedy search. Greedy search from [36] corresponds to beam search with a con-
stant g9. This variant not only allows finding minimal-time solutions within the beam
before any other solutions. If one uses additional actions to model costs, it also re-
moves the necessity to store the g-value of every state, since revisiting a state neces-
sarily means having found a less efficient trace compared with a previous trace to the
state.

Priority beam search is performed using a priority evaluation function f : Tr → Z,
which assigns priorities to transitions. Therefore, priority beam search works on tran-
sitions, not states. A fixed number of outgoing transitions is selected per state, which
makes the adaptation to a distributed setting straightforward. Since each selection does
not consider the outgoing transitions of other states, communication with other clients is
not needed. We can take the standard distributed state space generation algorithm, and
insert an evaluation and selection step at the point where a state is expanded. Priority
beam search for state spaces is described in more detail in [39].

Two other (related) variants are flexible priority beam search and flexible detailed
beam search, introduced in [39,41]. Flexible priority beam search behaves as regu-
lar priority beam search, but at each state it also selects any transition which has the
same priority as the least competent member of the usually selected set. In other words,
tie-breaking is avoided, by making the beam dynamic in size. The benefit of this ap-
proach is that there are no selection criteria other than the evaluation function used.
This not only leads to more insight in the effectiveness of the function, but in prac-
tice it may also mean that smaller beam widths can be used, compared to non-flexible
beam search (see, for instance, the results in section 7). The drawback is that the mem-
ory requirement is no longer linear in the maximum search depth, since β is only a
guideline for the beam width. This search can be implemented in a distributed set-
ting, since the local view characteristic is not lost. Similarly, in flexible detailed beam
search we achieve at each level closure on the worst evaluation value still selected.
The algorithm described in section 5.2 can be made flexible by redefining some func-
tions. First we say that function selγ (S

j
i ) selects at least γ states, where selγ(S

j
i ) =

[σ j
0 ]∪ . . .∪ [σ j

r ]∪ [σ j
r+1], with r ∈ N and r < k− 1, such that |[σ j

0 ]∪ . . .∪ [σ j
r ]| < γ

and |[σ j
0 ]∪ . . .∪ [σ j

r ]∪ [σ j
r+1]| ≥ γ . Likewise, we redefine evselβ (Ei) = [e0]∪ . . .∪ [er]∪

[er+1], with r ∈N and r < k−1, such that T ([e0])+ . . .+T ([er]) < β and T ([e0])+ . . .+
T ([er+1])≥ β .

7 Experimental Results

In this section we will show some experimental results of trying to solve instances of
what we call the Zebra Finch problem. We based this problem on a combination of
several river crossing problems [14], such as five jealous husbands and soldiers and
children. First we describe the problem and then we provide the results obtained using
the techniques described in this paper.

9 It should be noted, that in the literature greedy search is sometimes given a different meaning.
At least one other greedy search exists, which corresponds to detailed beam search with β = 1
(e.g. [43]).
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7.1 The Zebra Finch Problem

Zebra Finches (Taeniopygia guttata) are small birds living in Central Australia [42].
They are found in large colonies of pairs inhabiting open steppes with scattered bushes
and trees. These birds can react aggressively towards each other, for instance when a
jealous male bird tries to keep other male birds away from his mate. When young birds
reach an age where they can live outside the nest they are quickly adopted by the group.

Fig. 2. A pair of Zebra
Finches

We consider a group consisting of n pairs and m young,
sitting in a tree on an open steppe. They want to migrate
to some bushes up ahead, but they have to travel in smaller
groups, since there are some hawks flying in the distance,
which can spot a group of more than k adult finches. Once
a group has reached the bushes, at least one of the Zebra
Finches needs to fly back, in order to signal that a new group
can travel. On top of this there are two other conditions:

1. Considering the jealous nature of the male Zebra
Finches, no female finch may ever be either in the tree,
the travelling group or the bushes in the presence of other
male birds, unless her partner is also present.

2. The young in the colony have to be guided by at least
one adult finch, so the travelling group cannot consist of
only young finches. In limiting the group size, two young are equivalent to one
adult.

Finally some costs are related to the travelling from tree to bushes and back:

– A group consisting of only adults needs 1 time unit to travel the distance, indepen-
dent of the size of the group;

– If the number of young in the group does not exceed the number of adults, the time
needed to travel is 2 time units (each adult needs to take care of at most one young);

– When, in the group, the number of young exceeds the number of adults, the travel
takes 3 time units, since at least one adult takes care of more than one young.

We model the problem allowing all possible actions at all times. It demonstrates the
techniques’ ability to deal with arbitrary state spaces; problem instances lead to state
spaces containing both cycles (while forming the group and when birds fly away and
back again), and deadlocks (violations of the ‘jealous male’ condition).

7.2 Results

In Table 1 we present some results we found for instances of the Zebra Finch prob-
lem. We used minimal-cost search, g-synchronised detailed beam search and its flexible
variant, where for the last two cases we defined the h for each state as the number of
finches still in the tree, thereby encouraging fast removal and discouraging the returning
of finches. Problem instances are described by providing n, m and k. For each search,
the total execution time of the result found is given. Furthermore, the number of states
searched to find the solution and the time needed to find it is provided. Searches not
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performed are marked with hyphens, and where the results could not be obtained due
to technical reasons, dots are written. When a search is done in a distributed setting, an
asterisk is placed after the number of states. Sequential searches were performed using
a machine with a 64bit Athlon 2.2Ghz processor, 1 GB of memory and running Suse
9.3, while 16 of these machines together performed the distributed searches.

The minimal-cost search tells us that as the problem instances get bigger, the state
spaces grow very rapidly. The beam searches on the other hand show a much nicer
increase in states from instance to instance. Looking at the (50,50,10) instance though,
we see an unwanted effect in the regular g-synchronised beam search, already briefly
referred to in section 5.2, namely that increasing β not necessarily means getting a
better result. This might be due to pruning sometimes not being done only based on f ,
but also on other criteria, simply because more than β states turn out to be promising
enough. Although this mainly has a noticeable effect in smaller instances, it is undesired
and does not occur in its flexible variant. The fact, by the way, that a much bigger beam
width was also needed for the flexible search in comparison with previous instances
may indicate that the evaluation function can still be improved.

Furthermore, it is interesting to note that for smaller instances, the distributed algo-
rithm performs worse than the sequential version, which can be seen in the (50,50,20)
case, where we performed both a sequential and a distributed search. The Si sets in
the state space are all relatively small, making the communication overhead of the dis-
tributed algorithm noticeable. This seems to be directly related to the argument found
in the literature against distributed beam search in a more traditional setting [5], men-
tioned in more detail in section 8. Besides that, note that the result obtained with the
distributed search is better than the one of the sequential search, even though the beam
widths are equal. This is due to tie-breaking, which, in a distributed environment, can

Table 1. Zebra Finch problem results

Instance minimal-cost search g-synch. detailed BS Flex. g-synch. det. BS

n m k result # states time β result # states time β result # states time

10 5 5 19 228,737 00:00:29 400 19 58,272 00:00:14 400 19 67,804 00:00:18

10 10 5 21 513,123 00:01:07 400 21 65,605 00:00:18 400 21 85,633 00:00:24

10 10 8 10 2,020,061 00:04:28 450 10 48,669 00:00:19 400 10 69,550 00:00:21

50 50 5 121 18,157,429 00:48:13 1,000 121 641,315 00:04:49 400 121 298,065 00:02:31

50 50 10 41 475,744,120 * 05:13:26 1,000 43 637,285 00:07:28 - - - -

50 50 10 - - - 1,500 44 946,660 00:13:37 - - - -

50 50 10 - - - 4,000 43 2,139,347 . . . 4,000 42 2,365,102 . . .

50 50 20 - - - 5,000 24 3,478,600 01:14:00 1,500 22 1,649,203 . . .

50 50 20 - - - 5,000 20 3,095,782 * 02:01:05 4,000 20 2,579,479 * 01:48:16

100 100 10 - - - 5,000 87 6,009,134 * 01:39:52 4,000 87 5,318,589 * 06:22:54

100 100 20 - - - 5,000 41 5,884,895 * 00:42:48 4,000 42 5,433,733 * 04:02:26

100 100 50 - - - 20,000 17 27,366,213 * 02:57:21 4,000 18 41,611,293 * 06:16:29

100 100 80 - - - 20,000 10 19,107,091 * ca. 24h . . . . . . . . . . . .

200 200 50 - - - 50,000 35 135,964,662 * ca. 36h . . . . . . . . . . . .
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happen at multiple places in a single level, instead of only at one point. In the flexible
search, where tie-breaking is avoided altogether, this behaviour does not appear.

The (100,100,50) and the (100,100,80) case have a big difference in execution time,
while the number of states in the latter case is even lower. However, although the num-
ber of expanded states is lower in the (100,100,80) case, the number of encountered
and evaluated states is much higher. This is directly related to the maximum size of the
travelling group k.

The last two cases could not be solved using flexible beam search. The main reason
for this is that in many levels all states had to be expanded, since no states could be
pruned based on f . This shows that the flexible variant can point to the necessity to
design a better evaluation function, in this case for instance one, that also takes the
number of finches in the group into account. Finally, as stated earlier in section 6, for
the flexible search, overall β is more stable compared to the non-flexible search. This
means in general, that, given some search results, it is easier to determine β for a new
flexible search, than for a new non-flexible one.

8 Related Work

Concerning scheduling, quite some research has been done in the field of timed au-
tomata. In a paper by Niebert, et al. [28], the problem of minimum-time reachability for
timed automata is considered. In several papers by Behrmann, et al. (e.g. [2]), linearly
priced timed automata are introduced as an extension of timed automata with prices
on both transitions and locations. They consider the minimum-cost reachability prob-
lem and an algorithmic solution is offered. In [37], an approach specific for SPIN is
presented using a depth-first search algorithm.

There are many papers on solving job-shop scheduling problems, for instance [10].
Most approaches, however, are specifically designed for job-shop problems, while the
techniques described in this paper are also meant for other, industrial systems.

Distributed state space generation has appeared in various forms and in various set-
tings, we will just mention a few here. An early approach not limited to any specific
input language was proposed in [11]. In [13], a distributed generation algorithm is pre-
sented for the MURφ verifier. Based on this technique a distributed UPPAAL has been
developed [3]. An implementation of a distributed state space exploration algorithm
based on the SPIN model checker [26] exists. In [18], a method is described to generate
LTSs in a distributed way by means of the CADP model checker. All these approaches,
however, focus on exhaustive state space generation and not on heuristically pruning
parts of the state space on-the-fly in order to solve a particular kind of problem. In [23],
a distributed, external version of A∗ is developed, combining the fields of distributed,
directed and external model checking.

Attempts to create a distributed beam search can be found outside of model check-
ing [5]. In those settings one usually works with search trees which have a much lower
average branching factor (the number of outgoing transitions per state) compared to an
average state space. Because of this, small beam widths, usually not bigger than 10, can
be used, making a distributed beam search counter-productive due to the communica-
tion overhead (a similar result can be found in section 7.2). In model checking, however,
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we wish to deal with arbitrary state spaces, where the average branching factor can be
much higher, thereby, for bigger instances, making a distributed beam search effective.

Relating our extensions of beam search to other work, in [16], best-first search is ex-
tended to k-best-first search, allowing to compensate for inaccuracies in the evaluation
function by selecting in each iteration more than only the best state. Essentially, the
difference between k-best-first search and beam search is the decision to keep states not
selected in one iteration for the next iteration. This makes k-best first search a complete
search, but it also means its memory requirement is higher, since there is no pruning
done. A trade-off can, however, be achieved, by using inadmissible heuristics, such that
fewer states are expanded, but the solution will be near-optimal. This trade-off is also
used for weighted A∗ [33] and linear-space best-first search [25], where the h-function
is multiplied by some factor. Moreover, in the latter, the memory requirement is linear
in the size of the search depth. Our extension of g-synchronised beam search can prob-
ably best be compared with filtered beam search [30], in the sense that in each iteration,
the current set of states undergoes two phases; in filtered beam search, first a priority
beam search is applied, and on the outcome of that, detailed beam search is used, this to
lessen the computational complexity. In g-synchronised beam search, we first postpone
some states, and then prune states from the remaining set.

In [20], the development of heuristics is the main focus, making it nicely connect-
ing to this paper, in the sense that we start with the assumption of having a heuristic
function. Their objective is to model check Java programs with heuristics constructed
using the properties to check, the structure of the programs and additional input of
the user. They use a number of search algorithms, one of which is beam search. Their
beam search, however, seems to deviate from the traditional notion, in that f (s) = h(s),
making it practically a linear space greedy search. Furthermore, they include duplicate
detection, but do not consider other extensions in order to deal more efficiently with
arbitrary state spaces, such as a flexible search.

Finally, in [43], beam search is extended to a complete search, by using a new data
structure, called a beam stack. With this it is possible to achieve a range of searches,
from depth-first search (β = 1) to BFS (β → ∞). Considering our extensions for arbi-
trary state spaces, it would be interesting to try to combined these two approaches.

9 Conclusions

We presented a distributed version of detailed beam search, used in a model checking
setting. Due to the global view of detailed beam search, creating this version was non-
trivial. In practice it shows that for bigger problem instances, the distributed algorithm
pays off. We developed a variant called g-synchronised beam search, which considers
the states sorted by increasing g. It does not need the storage of g-values of all states
when using additional cost actions, since reopening is never necessary. Furthermore, we
observed that sometimes increasing β does not lead to finding better results, due to the
sometimes cutting away of states which are promising enough. To avoid this unwanted
behaviour, we created a (distributed) flexible variant of beam search.

Future work. Usage in practice indicated that modelling time using a sequence of tick
actions leads to state space explosions very quickly. The searches could be adapted to
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deal with tick(t) actions, where t ∈N denotes a number of time units delayed at once.
Furthermore, as the construction of a suitable f is a big problem when using heuristics,
it might be interesting to try to quantify the effectiveness of a given function.

Acknowledgements. We thank the anonymous reviewers of MoChArtIV for their con-
structive comments, and Mohammad Torabi Dashti for the help in designing the dis-
tributed detailed beam search algorithm.

References

1. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: EATCS Monograph,
Springer, Heidelberg (2002)

2. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.M.T.: Efficient
Guiding Towards Cost-Optimality in UPPAAL. In: Margaria, T., Yi, W. (eds.) ETAPS 2001
and TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg (2001)

3. Behrmann, G., Hune, T., Vaandrager, F.: Distributing Timed Model Checking - How the
Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 216–231. Springer, Heidelberg (2000)

4. Bergstra, J., Klop, J.: Algebra of Communicating Processes with Abstraction. Theor. Com-
put. Sci. 37, 77–121 (1985)

5. Bisiani, R.: Beam Search. In: Encyclopedia of Artificial Intelligence, pp. 1467–1568. Wiley
Interscience Publication, Chichester (1992)

6. Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction of State
Spaces. In: Proc. of PDMC 2002, ENTCS, vol. 68 (4), Elsevier, Amsterdam (2002)

7. Blom, S.C.C., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.C.:
μCRL: A Toolset for Analysing Algebraic Specifications. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)

8. Blom, S.C.C., Ioustinova, N., Sidorova, N.: Timed verification with μCRL. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 178–192. Springer, Heidelberg (2003)

9. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, 2nd edn. Wiley,
Chichester (2006)

10. Brucker, P., Jurisch, B., Sievers, B.: A branch and bound algorithm for the job-shop schedul-
ing problem. Discrete Applied Mathematics 49(6), 107–127 (1994)

11. Ciardo, G., Gluckman, J., Nicol, D.: Distributed State Space Generation of Discrete-State
Stochastic Models. INFORMS Journal on Computing 10(1), 82–93 (1998)

12. Della Croce, F., T’kindt, V.: A recovering beam search algorithm for the one-machine dy-
namic total completion time scheduling problem. Journal of the Operational Research Soci-
ety 53, 1275–1280 (2002)

13. Dill, D.: The Murφ Verification System. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

14. Dudeney, H.E.: Amusements in Mathematics, chapter 9, Dover Publications, Inc, pp. 112–
114(1958)

15. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed Explicit-state Model Checking in the
Validation of Communication Protocols. STTT 5, 247–267 (2003)

16. Felner, A., Kraus, S., Korf, R.E.: KBFS: K-Best-First Search. AMAI 39(1-2), 19–39 (2003)



Distributed Extended Beam Search for Quantitative Model Checking 183

17. Fox, M.S.: Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD thesis,
CMU (1983)

18. Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for Model-
Checking. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 217–234.
Springer, Heidelberg (2001)

19. Godefroid, P., Khurshid, S.: Exploring Very Large State Spaces Using Genetic Algorithms.
In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp.
266–280. Springer, Heidelberg (2002)

20. Groce, A., Visser, W.: Heuristics for Model Checking Java Programs. STTT 6(4), 260–276
(2004)

21. Groote, J.F., Reniers, M.A.: Handbook of Process Algebra, 17, pp. 1151–1208. Elsevier,
Amsterdam (2001)

22. Huth, M., Kwiatkowska, M.: Quantitative Analysis and Model Checking. In: Proc. LICS’97,
pp. 111–127. IEEE Computer Society Press, Los Alamitos (1997)

23. Jabbar, S., Edelkamp, S.: Parallel External Directed Model Checking With Linear I/O.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251.
Springer, Heidelberg (2006)

24. Korf, R.E.: Uniform-cost Search. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelli-
gence, pp. 1461–1462. Wiley-Interscience, New York, NY (1992)

25. Korf, R.E.: Linear-space best-first search. Artificial Intelligence 62, 41–78 (1993)
26. Lerda, F., Sista, R.: Distributed-Memory model checking with SPIN. In: Dams, D.R., Gerth,

R., Leue, S., Massink, M. (eds.) Theoretical and Practical Aspects of SPIN Model Checking.
LNCS, vol. 1680, pp. 22–39. Springer, Heidelberg (1999)

27. Lowerre, B.T.: The HARPY speech recognition system. PhD thesis, CMU (1976)
28. Niebert, P., Tripakis, S., Yovine, S.: Minimum-time reachability for timed automata. In: Proc.

MED 2000, IEEE Press, Los Alamitos (2000)
29. Oechsner, S., Rose, O.: Scheduling Cluster Tools Using Filtered Beam Search and Recipe

Comparison. In: Proc. 2005 Winter Simulation Conference, pp. 2203–2210. IEEE Computer
Society Press, Los Alamitos (2005)

30. Ow, P.S., Morton, E.T.: Filtered beam search in scheduling. International Journal of Produc-
tion Research 26, 35–62 (1988)

31. Ow, P.S., Smith, S.F.: Viewing scheduling as an opportunistic problem-solving process. An-
nals of Operations Research 12, 85–108 (1988)

32. Peled, D., Pratt, V., Holzmann, G. (eds.): Partial Order Methods in Verification, vol. 29 of
DIMACS series in discrete mathematics and theoretical computer science. AMS (1996)

33. Pohl, I.: Heuristic Search Viewed as Path Finding in a Graph. Artificial Intelligence 1,
193–204 (1970)

34. Roscoe, A.W.: Model-checking CSP. In: A Classical Mind: Essays in Honour of C.A.R.
Hoare, pp. 353–378. Prentice-Hall, Englewood Cliffs (1994)

35. Rubin, S.: The ARGOS Image Understanding System. PhD thesis, CMU (1978)
36. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-

wood Cliffs (1995)
37. Ruys,T.C.:Optimal schedulingusingBranch-and-BoundwithSPIN4.0. In:Ball,T.,Rajamani,

S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp. 1–17. Springer, Heidelberg (2003)
38. Sabuncuoglu, I., Bayiz, M.: Job shop scheduling with beam search. European Journal of

Operational Research 118, 390–412 (1999)
39. Dashti, T. M., Wijs, A.J.: Pruning State Spaces Using Extended Beam Search. To be pub-

lished, http://www.cwi.nl/∼wijs/beamsearch.pdf (2006)

http://www.cwi.nl/~wijs/beamsearch.pdf


184 A.J. Wijs and B. Lisser

40. Wijs, A.J., Fokkink, W.J.: From χt to μCRL: Combining Performance and Functional Analy-
sis. In: Proc. ICECCS’05, pp. 184–193. IEEE Computer Society Press, Los Alamitos (2005)

41. Wijs, A.J., van de Pol, J.C., Bortnik, E.: Solving Scheduling Problems by Untimed Model
Checking. In: Proc. FMICS’05, pp. 54–61. ACM Press, 2005. Extended version as CWI
technical report SEN-R0608, http://db.cwi.nl/rapporten/abstract.php?abstractnr=2034

42. Zann, R.A.: The Zebra Finch - A Synthesis of Field and Laboratory Studies. Oxford Univer-
sity Press Inc, Oxford (1996)

43. Zhou, R., Hansen, E.A.: Beam-Stack Search: Integrating Backtracking with Beam Search.
In: Proc. ICAPS’05, pp. 90–98. AAAI (2005)



Author Index

Alechina, Natasha 19
Araragi, Tadashi 84

Bertoli, Piergiorgio 1, 19
Bozzano, Marco 1

Cho, Seung Mo 84
Cimatti, Alessandro 1

Edelkamp, Stefan 35, 67

Ghidini, Chiara 19

Hoffmann, Jörg 51

Jabbar, Shahid 67
Jago, Mark 19

Kupferschmid, Sebastian 51
Kurkowski, Miros�law 146

Lisser, Bert 166
Logan, Brian 19
Lomuscio, Alessio 95

Pecheur, Charles 113
Penczek, Wojciech 146
Podelski, Andreas 51

Raimondi, Franco 113
Rybalchenko, Andrey 51

Serafini, Luciano 19
Smaus, Jan-Georg 51
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